
Bash recap

What is bash script?

The bash script is a shell programming language. Generally, we run many types of shell commands
from the terminal by typing each command separately that require time and efforts. If we need to run
the same commands again then we have to execute all the commands from the terminal again. But
using a bash script, we can store many shell command statements in a single bash file and execute
the file any time by a single command. Many system administration related tasks, program
installation, disk backup, evaluating logs, etc. can be done by using proper bash script.

What are the advantages of using bash scripts?

Bash script has many advantages which are described below:

It is easy to use and learn.
Many manual tasks that need to run frequently can be done automatically by writing a bash
script.
The sequence of multiple shell commands can be executed by a single command.
Bash script written in one Linux operating system can easily execute in other Linux operating
system. So, it is portable.
Debugging in bash is easier than other programming languages.
Command-line syntax and commands that are used in the terminal are similar to the commands and
syntax used in bash script.
Bash script can be used to link with other script files.

Mention the disadvantages of bash scripts

Some disadvantages of bash script are mentioned below:

It works slower than other languages.
The improper script can damage the entire process and generate a complicated error.
It is not suitable for developing a large and complex application.
It contains less data structure compare to other standard programming languages.

What types of variables are used in bash?

Two types of variables can be used in bash script. These are:

 System variables (a.k.a environment variables)
 The variables which are pre-defined and maintained by the Linux operating system are called system
variables. These type of variables are always used by an uppercase letter. The default values of these
variables can be changed based on requirements.

 set , env and printenv commands can be used to print the list of system variables.

 Example:

User-defined variable (a.k.a local variables)

 The variables which are created and maintained by users are called user-defined variables. They are
also called local variables. These types of variables can be declared by using lowercase or uppercase
or both uppercase and lowercase letters.

But it is better to avoid using all uppercase letter to differentiate the variables from system
variables.

 Example:

export command is useful to make local variables accessible in other sub-shells.

#!/bin/bash
 # Printing System Variables

 #Print Bash shell name
 echo $BASH

 # Print Bash shell Version
 echo $BASH_VERSION

 # Print Home directory name
 echo $HOME

#!/bin/bash

 num=100
 echo $num

How to declare and delete variables in bash?

The variable can be declared in bash by data type or without data type. If any bash variable is
declared without declare command, then the variable will be treated as a string. Bash variable is
declared with declare command to define the data type of the variable at the time declaration.

–r, -i, -a, -A, -l, -u, -t and –x options can be used with declare command to declare a variable with
different data types.

Example:

unset command is used to remove any bash variable. The variable will be inaccessible or undefined
after using unset command.

Bash is considered weakly-typed language.
Options to define data types are limited and don’t support all types of data. For example, float data
type can’t be declared by using declare command.

Example:

#!/bin/bash

 #Declare variable without any type
 num=10

 #Values will be combined but not added
 result=$num+20
 echo $result

 #Declare variable with integer type
 declare -i num=10

 #Values will be added
 declare -i result=num+20
 echo $result

#!/bin/bash

 str="Linux Hint"
 echo $str
 unset $str
 echo $str

How to add comments in a bash script?

Single line and multi-line comments can be used in bash script. ‘#‘ symbol is used for single-line
comment. ‘<<’ symbol with a delimiter are used for adding multi-line comment. The latter is known as
HereDoc trick.

Example:

How can you combine strings in a bash script?

String values can be combined in bash in different ways. Normally, the string values are combined by
placing together but there are other ways in bash to combine string data.

Example:

#!/bin/bash
 #Print the text [Single line comment]
 echo "Bash Programming"
 <<-'TOKEN'
 Calculate the sum
 Of two numbers [multiline comment]
 TOKEN
 num=25+35
 echo $num

#!/bin/bash
#Initialize the variables
 str1="PHP"
 str2="Bash"
 str3="Perl"

 # Print string together with space
 echo $str1 $str2 $str3

 #Combine all variables and store in another variable
 str="$str1, $str2 and $str3"

 #Combine other string data with the existing value of the string
 str+=" are scripting languages"

Which commands are used to print output in bash?

echo and printf commands can be used to print output in bash. echo command is used to print the
simple output and printf command is used to print the formatted output.

Example:

How to take input from the terminal in bash?

read command is used in a bash script to take input from the terminal.

 #Print the string
 echo $str

#!/bin/bash

 #Print the text
 echo "Welcome to LinuxHint"
 site="linuxhint.com"
 #Print the formatted text
 printf "%s is a popular blog site\n" $site

Example:**

#!/bin/bash
#Print message
echo "Enter your name"
#Take input from the user
read name
Print the value of $name with other string
echo "Your name is $name"

How to use command-line arguments in bash?

Command-line arguments are read by $1 , $2 , $3 … $n variables. Command-line argument values are
provided in the terminal when executing the bash script. $1 is used to read the first argument, $2 is
used to read the second argument and so on.

Example:

How to read the second word or column from each line of a file?

The second word or column of a file can be read in a bash script by using different bash commands
easily, such as awk , sed etc. Here, the use of awk is shown in the following example.
 Example: Suppose, course.txt file contains the following content and we have printed only the second
word of each line of this file.

#!/bin/bash
#Check any argument is provided or not
 if [[$# -eq 0]]; then
 echo "No argument is given."
 exit 0
 fi
#Store the first argument value
 color=$1
Print the argument with other string
 printf "You favorite color is %s\n" $color
 echo $?
 echo $0
 echo $$

CSE201 Java Programming
CSE303 Data Structure
CSE408 Unix Programming

#!/bin/bash
The following script will print the second word of each line from course.txt
file.
the output of cat command will pass to awk command that will read the second word
of each line.
echo `cat course.txt | awk '{print $2}'`

How to declare and access an array variable in bash?

Both numeric and associative arrays are supported by a bash script. An array variable can be
declared with and without declare command. –a option is used with declare command to define a
numeric array and –A option is used with declare statement to define an associative array in bash.
Without declare command, the numeric array can be defined only in bash.

Example:

How can conditional statements be used in bash?

The most common conditional statement in most programming languages is the if-elseif-else
statement. The syntax of if-elseif-else statement in bash is a little bit different from other programming
languages. ‘If’ statement can be declared in two ways in a bash script and every type of ‘if’ block must
be closed with ‘fi’. ‘if’ statement can be defined by third brackets or first brackets like other

#!/bin/bash

Declare a simple numeric array
 arr1=(CodeIgniter Laravel ReactJS)

Print the first element value of $arr1
 echo ${arr1[0]}

Declare a numeric array using declare command
 declare -a arr2=(HTML CSS JavaScript)

Print the second element value of $arr2
 echo ${arr2[1]}

Declare an associative array using declare statement
 declare -A arr3=([framework]=Laravel [CMS]=Wordpress [Library]=JQuery)

Print the third element value of $arr3
 echo ${arr3[Library]}

All elements of an array can be accessed by using any loop or ‘*’ symbol as an
array index.

programming languages.

Syntax:

Example:

 A.

if [condition]; then
 statements
 fi

B.

if [condition]; then
 statements 1
 else
 statement 2
 fi

C.

if [condition]; then
 statement 1
 elif [condition]; then
 statement 2
 ….
 else
 statement n
 fi

String
Comparison

Integer
Comarison

Description

== -eq It is used to check equality

!= -ne It is used to check inequality

< -lt
It is used check the first value is less than the second value or
not

> -gt
It is used check the first value is greater than the second
value or not

<= -le
It is used check the first value is less than or equal to the
second value or not

>= -ge
It is used check the first value is greater than or equal to the
second value or not

How to compare values in bash?

Six types of comparison operators can be used in bash to compare values. There are two ways to use
these operators in bash depending on the data type. These are mentioned below.

Example:

#!/bin/bash

Assign a value to $n
 n=30
Check $n is greater than 100 or not
 if [$n -lt 100]; then
 echo "$n is less than 100"
Check $n id greater than 50 or not
 elif [$n -lt 50]; then
 echo "$n is less than 50"
 else
 echo "$n is less than 50"
 fi

Which conditional statement can be used as an alternative to if-elseif-
else statements in bash?

case statement can be used as an alternative tp if-elseif-if statement. case block is closed by esac
statement in bash. No break statement is used inside ‘case‘ block to terminate from the block.

Syntax:

What different types of loops can be used in bash?

Three types of loops are supported by a bash script. These are while, for and until loops. Loops in
bash check the condition at the start of the loop. While loop works until the condition remains true and
until loop works until the condition remains false. There are two ways to use for loop. One is general for
loop that contains three parts and another is for-in loop. The uses of these three loops are shown in the
following example.

#!/bin/bash
Initialize $n
 n=130
 o="even"
Check $n is greater than or equal to 100 or not using ‘–ge’.
 if [$n -ge 100]; then
 echo "$n is greater than or equal to 100"
 else
 echo "$n is less than 100"
 fi
Check $n is even or odd using ‘==’ operator
 if (($o == "even")); then
 echo "The number is even"
 else
 echo "The number is odd"
 fi

case in
 Match pattern 1) commands;;
 Match pattern 2) commands;;
 ……
 Match pattern n) commands;;
 esac

Example:

How to cut and print some part of a string data in bash?

Example:

#!/bin/bash
Initialize $n
 n=5
Calculate the square of 5-1 using while loop
 while [$n -gt 0]
 do
 sqr=$((n*n))
 echo "The square of $n is $sqr"
 ((n--))
 done

Calculate the square of 5-1 using for loop
 for ((i=5; i>0; i--))
 do
 sqr=$((i*i))
 echo "The square of $i is $sqr"
 done

#!/bin/bash
Initialize a string value into $string
 string="Python Scripting Language"
Cut the string value from the position 7 to the end of the string
 echo ${string:7}
Cut the string value of 9 characters from the position 7
 echo ${string:7:9}
Cut the string value from 17 to 20
 echo ${string:17:-4}

Mention some ways to perform arithmetic operations in bash?

Arithmetic operations can be done in multiple ways in bash. ‘let’, ‘expr’, ‘bc’ and double brackets are
the most common ways to perform arithmetic operations in bash. The uses of these commands are
shown in the following example.

Example:

How to check a directory exists or not using bash?

Bash has many test commands to check if a file or directory exists or not and the type of the file. ‘-d’
option is used with a directory path as a conditional statement to check if the directory exists or not in
bash. If the directory exists, then it will return true otherwise it will return false.

Example:

!/bin/bash
Calculating the subtraction by using expr and parameter expansion
 var1=$(expr 120 - 100)
print the result
 echo $var1
Calculate the addition by using let command
 let var2=200+300
Print the rsult
 echo $var2
Calculate and print the value of division using ‘bc’ to get the result
with fractional value
 echo "scale=2; 44/7" | bc
Calculate the value of multiplication using double brackets
 var3=$((5*3))
Print the result
 echo $var3

Another option is to use test

Many options are available in bash to test file. Some options are mentioned below.

!/bin/bash
Assign the directory with path in the variable, $path
 path="/home/ubuntu/temp"
Check the directory exists or not
 if [[-d "$path"]]; then
Print message if the directory exists
 echo "Directory exists"
 else
 # Print message if the directory doesn’t exist
 echo "Directory not exists"
 fi

if test -d dirA; then echo "true"; fi
test -f file1 && echo "true" || echo "false"

Option Description

-f It is used to test the file exists and it is a regular file.

-e It is used to test the file exists only.

-r It is used to test the file exists and it has read permission.

-w It is used to test the file exists and it has to write permission.

-x It is used to test the file exists and it has execution permission.

-d It is used to test the directory exists.

-L It is used to test the file exists and It is a symbolic link.

-S It is used to test the file exists and It is a socket.

-b It is used to test the file is a block device.

-s It is used to check the file is not zero sizes.

-nt
It used to check the content of the first file is newer than the second file. For
example, file1 -nt file2 indicates that file1 is newer than file2.

-ot
It used to check the content of the first file is older than the second file. For
example, file1 -ot file2 indicates that file1 is older than file2.

-ef
It is used to check that two hard links refer to the same file. For example, flink1 -ef
flink2 indicates that flink1 and flink2 are hard links and both refer to the same file.

How can a bash script be terminated without executing all statements?

Using ‘exit’ command, a bash script can be terminated without executing all statements. The following
script will check if a particular file exists or not. If the file exists, then it will print the total characters of
the file and if the file does not exist then it will terminate the script by showing a message.

Example:

#!/bin/bash

 # Initialize the filename to the variable, $filename
 filename="course.txt"

What are the uses of break and continue statements in bash?

break statement is used to terminate from a loop without completing the full iteration based on a
condition and continue statement is used in a loop to omit some statements based on a condition. The
uses of break and continue statements are explained in the following example.

Example:

 # Check the file exists or not by using -f option
 if [-f "$filename"]; then
 # Print message if the file exists
 echo "$filename exists"
 else
 # Print message if the file doesn't exist
 echo "$filename not exists"
 # Terminate the script
 exit 1
 fi

 # Count the length of the file if the file exists
 length=`wc -c $filename`

 # Print the length of the file
 echo "Total characters - $length"

#!/bin/bash
 # Initialize the variable $i to 0 to start the loop
 i=0
 # the loop will iterate fot 10 times
 while [$i -le 10]
 do
 # Increment the value $i by 1
 ((i++))
 # If the value of $i equal to 8 then terminate the loop by using 'break'
statement
 if [$i -eq 8]; then
 break;
 fi
 # If the value of $i is greater than 6 then omit the last statement of the loop
 # by using continue statement
 if [$i -ge 6]; then

How to make a bash file executable?

Executable bash files can be made by using ‘chmod’ command. Executable permission can be set by
using ‘+x’ in chmod command with the script filename. Bash files can be executed without the explicit
‘bash’ command after setting the execution bit for that file.

Example:

How can you print a particular line of a file in bash?

There are many ways to print a particular line in bash. How the ‘awk’, ‘sed’ and ‘tail’ commands can be
used to print a particular line of a file in bash is shown in the following example.

Example:

 continue;
 fi
 echo "the current value of i = $i"
 done

 # Print the value of $i after terminating from the loop
 echo "Now the value of i = $i"

Set the execution bit
 $ chmod +x filename.sh

 # Run the executable file
 $./filename.sh

#!/bin/bash

 # Read and store the first line from the file by using `awk` command with NR
variable
 line1=`awk '{if(NR==1) print $0}' course.txt`

What is IFS?

IFS is a special shell variable. The full form of IFS is Internal Field Separator,
 it acts as delimiter to separate the word from the line of text. It is mainly used for splitting a string,
reading a command, replacing text etc.

Example:

How to find out the length of a string data?

expr ** wc ** and awk commands can be used to find out the length of a string data in bash. ‘expr’ and
‘awk’ commands use length option, ‘wc’ command uses ‘–c’ option to count the length of the string.

Example:

The uses of the above commands are shown in the following script.

 # Print the line
 echo $line1

 # Read the second line from the file by using `sed` command with -n option
 line2=`sed -n 2p course.txt`
 # Print the line
 echo $line2

 # Read the last line from the file by using `tail` command with -n option
 line3=`tail -n 1 course.txt`
 # Print the file
 echo $line3

#!/bin/bash
Declare ':' as delimiter for splitting the text
 IFS=":"
Assign text data with ':' to $text
 text="Red:Green:Blue"
for loop will read each word after splitting the text based on IFS
 for val in $text; do
 # Print the word
 echo $val
 done

How to run multiple bash script in parallel?

Multiple bash scripts can be executed in parallel by using nohup command. How multiple bash files can
be executed in parallel from a folder is shown in the following example.

Example:

Reference: https://linuxhint.com/bash_scripting_interview_questions/

#!/bin/bash
 # Count length using `expr` length option
 echo `expr length "I like PHP"`
 # Count length using `wc` command
 echo "I like Bash" | wc -c
 # Count length using `awk` command
 echo "I like Python" | awk '{print length}'

 # for loop will read each file from the directory and execute in parallel
 for script in dir/*.sh
 do
 nohup bash "$script" &
 done

https://linuxhint.com/bash_scripting_interview_questions/

	 Bash recap	
	What is bash script?
	 What are the advantages of using bash scripts?
	Mention the disadvantages of bash scripts
	What types of variables are used in bash?
	User-defined variable (a.k.a local variables)

	How to declare and delete variables in bash?
	How to add comments in a bash script?
	How can you combine strings in a bash script?
	Which commands are used to print output in bash?
	How to take input from the terminal in bash?
	How to use command-line arguments in bash?
	How to read the second word or column from each line of a file?
	How to declare and access an array variable in bash?
	How can conditional statements be used in bash?
	How to compare values in bash?
	Which conditional statement can be used as an alternative to if-elseif-else statements in bash?
	What different types of loops can be used in bash?
	How to cut and print some part of a string data in bash?
	Mention some ways to perform arithmetic operations in bash?
	How to check a directory exists or not using bash?
	How can a bash script be terminated without executing all statements?
	What are the uses of break and continue statements in bash?
	How to make a bash file executable?
	How can you print a particular line of a file in bash?
	What is IFS?
	How to find out the length of a string data?
	How to run multiple bash script in parallel?

