
Fall 2021: Computational Science I

Instructor: Mohammad Sarraf Joshaghani
(m.sarraf.j@rice.edu)

Module 1: Linux OS and shell programming

1

Introduction

Run your first VM

Very basic commands with the shell

How to get help on Linux

Working with files and directories

Simple data processing

File attributes and searching

Control jobs and processes

Editors; the very powerful vim

Customizing shells and dot files

Talking to other machines and remote access

Shell programming

Outline
Lecture 2 (Aug 27, 2021)

• Linux operating systems, shells and terminals
• Working with Virtual Machines (in case you do not have a Linux OS)
• Basic Linux commands

2

What is your OS?
Linux . macOS . Windows

3

Unix/Linux OS??
What is a Unix system?

• Unix operating systems were first created at AT&T Bell Labs in the
70s, in part by Ken Thompson and Dennis Ritchie, inventors of the c
programming language. (UC Berkeley, Sun, IBM, and others also
contributed) −→ code eventually standardize in series of
publications called POSIX.

• There is not just one flavor of Unix: Solaris, HP-UX, IRIX, etc.
Apple has macOS (Darwin), and Linux is yet another variant.

What is a Linux system?

• It is a “Unix-like” operating system written by Linus Torvalds. It was
first released September 17, 1991.

• Linux operating systems are open source, highly scalable and widely
used in scientific computation, on large computer clusters, etc.

4

https://www.invent.org/inductees/ken-thompson
https://en.wikipedia.org/wiki/Dennis_Ritchie#/media/File:Dennis_Ritchie_2011.jpg

Unix/Linux OS
• Unix/Linux has a kernel and several different shells
• The shell is the command interpreter (the program that processes
the command you enter in your terminal emulator)

• The kernel sits on top of the hardware (CPU, RAM, disks, network,
. . .) and is the core of the OS;
� does memory management, task scheduling, handles with file

systems, I/O handling
• Kernel receives tasks from the shell and performs them.

5

Linux distros
Within Linux there are various Linux distributions such as Fedora,
Debian, Red Hat, and Ubuntu (and over 100 more). See:
https://distrowatch.com/

• Ubuntu is probably the most well-known Linux distro. Ubuntu is a
cleaned-up version of Debian, but it has its own software repositories

• Linux Mint: Ubuntu-based distro with elegant apps
• Debian: is an operating system composed only of free, open-source

software. The Debian project has been operating since 1993 — over 20
years ago! This widely respected project is still releasing new versions of
Debian, but it’s known for moving much more slowly than distros like
Ubuntu or Linux Mint

• Fedora: Fedora is a project with a strong focus on free software
(de-corporatized Red Hat Linux) — you won’t find an easy way to install
proprietary graphics drivers here, although third-party repositories are
available.

• CentOS/Red Hat is a commercial Linux distribution intended for servers
and workstations. It’s based on the open-source Fedora project, but is
designed to be a stable platform with long-term support. CentOS is free
analog of red Hat Enterprise

6

https://distrowatch.com/

Shell flavors

• A program that takes keyboard commands and passes them to the
OS to carry out

• Different shell types exist that can extend the command line
interface (where you type commands) with various nice features like
colors, configuration, auto-completes and scripting capabilities.

• The bash shell is most common, and is typically the default on
Linux and OSX. However, other shells exist and are actively used
(e.g. csh or zsh, or Fish). Typically, they don’t vary all that much,
In any case, don’t worry too much about the options at this point;
it’s easy to switch between them if the need arises.

I prefer zsh → (expand wild cards; will give you a list of switches; give tab completion)
see this: What shell I sould use?

Will talk more about that later!

7

https://stackoverflow.com/questions/199661/what-linux-shell-should-i-use

What is the terminal?

• Graphical User Interface (GUI) program that allows users to interact
with the shell

• Examples: iterm2, Alacritty, mac Terminal, xterm, and
Terminator

8

Sort them out in a Breakout room

9

Sort them out in a Breakout room

9

Introduction

Run your first VM

Very basic commands with the shell

How to get help on Linux

Working with files and directories

Simple data processing

File attributes and searching

Control jobs and processes

Editors; the very powerful vim

Customizing shells and dot files

Talking to other machines and remote access

Shell programming

What is a Virtual Machine

• Virtual Machine is a computer inside a computer
• Hypervisors is a software doing the virtualization for us (like

VirtualBox, VMware, Hyper-V)
� Two classes of Hyperviosors: Type I (does not need a host OS) and

Type II (Install on a host OS)
� Create virtual (fake) hardware (borrowed from the actual one)

• You can have more than one VM (macOS, Linux, etc) on your
machine

10

Standardizing our OS for this class

for this class, we will work within an ubuntu os, a linux operating system
that we will install within VirtualBox.

https://www.virtualbox.org/

there are other ways to run ubuntu, like dual booting or doing a fresh
install on your computer. VirtualBox is the easiest right now...

it will run an ubuntu operating system like an application within your
native operating system.

11

https://www.virtualbox.org/

Installing VirtualBox

go to https://www.virtualbox.org/wiki/Downloads and select the
proper host, i.e. if you are running a Windows OS, you need a Windows
host, etc.

also, go to https://ubuntu.com/download/desktop to download the
iso file for ubuntu 20.04. we will use this file to install the linux os on our
VirtualBox.

we can follow roughly these instructions for the install:
https://brb.nci.nih.gov/seqtools/installUbuntu.html

12

https://www.virtualbox.org/wiki/Downloads
https://ubuntu.com/download/desktop
https://brb.nci.nih.gov/seqtools/installUbuntu.html

Step 0: set up a virtual machine

click “NEW” in the menu...

13

Step 1: name your machine

give your machine a name.

the type should be “linux,” and version will be 64-bit ubuntu.

14

Step 2: pick amount of RAM

ubuntu recommends 4Gb for the os version we will be installing

see: https://ubuntu.com/download/desktop

15

https://ubuntu.com/download/desktop

Step 3: setup hard disk

16

Step 4: virtual disk image

17

Step 5: let the hard disk be a fixed size

this will be faster.

18

Step 6: pick size of hard drive

ubuntu recommends 25Gb for the os version we will be installing

i am picking a bit more, for a “buffer”

see: https://ubuntu.com/download/desktop

19

https://ubuntu.com/download/desktop

Step 7: done!

20

Step 8: pick number of processors

21

Step 9: point machine to image
of ubuntu os for install

22

Step 10: reboot the machine!

note: when you reboot, you should “remove the installation medium,
and then press ENTER.”

this requires you to go to Settings > Storage, and “eject” the iso file.

23

Step 11: (optional) install guest additions

this step seems to be helpful for graphics within the virtual machine. by
the way, this change might not be possible on certain operating systems.

go to Devices > Insert Guest Additions CD Image, and following
prompts.

24

Other options

I’m not going to require that you use Linux through a virtual machine if
you prefer not to. Some other options at your disposal:

• Use your existing OS, if you have a machine running Linux or MacOS
• Install a partition on your machine running Linux.

→ I’ll do best effort to help troubleshoot computing problems on other
platforms, but I cannot guarantee success. The answer will very
likely be “use the virtual machine.”

25

Introduction

Run your first VM

Very basic commands with the shell

How to get help on Linux

Working with files and directories

Simple data processing

File attributes and searching

Control jobs and processes

Editors; the very powerful vim

Customizing shells and dot files

Talking to other machines and remote access

Shell programming

Basic *nix Commands-Users & System
When, what, where, who . . . ?

Structure of a UNIX command

Command︷︸︸︷
ls

Options︷ ︸︸ ︷
-l -t arg1 arg2︸ ︷︷ ︸

Arguments

26

When?
• date . . . display the full date

� date +%m . . . the %m is a format specifier (month)
� date +%h . . . the %h is a format specifier (month string)

• cal . . . display the calendar
• history . . . display the entire history of commands
use up arrow to scroll through commands you have used

• history . . . display the entire history of commands
Tips:
� use up arrow to scroll through commands you have used
� use Tab to autocomplete
� use !<cmd> to expand most recent invocation of <cmd>
� use !! to expand last commands again

Q What does Sudo!! do?
Q How to clean your history?

27

what?
Lecture 3 (Aug 30, 2021)

List

• ls . . . list directory contents
• ls -a . . . list all
• ls -t . . . list and sort by time
• ls -l -h . . . list long listing format and human readable Q How

to get the size of a directory?
• file . . . report the type of files
• Multiple options can be combined, for example:
� ls -l -h ≡ ls -lh

Environment variable

• The system uses environment variables to store system and user info
� define with export <MY_NEW_VAR>='NewVar' (bash shell)

� access with $, e.g., echo $MY_New_VAR

Q What is the difference between export a=5 and a=5 ?
28

What?

What is 2+2?

• for simple calculations in terminal you can use: echo $((2 + 2))
� The syntax is $((...MathExpr...))
� spaces between operator and number is obligatory.

• Better way to calculate expression is to use expr
� expr 2 + 2

� x=20
y=5
expr $x / $y

Q How to calculate 5× 5 using expr and echo commands?

29

Where?

Navigation commands

• pwd . . .print working directory

• cd . . . change directory
� cd $HOME or better, cd ∼ , even better cd
� cd go up one level

• Absolute path (directory structures) start with / , the root directory
• tree . . . make tree-shaped list (how to set depth-level?)

Tip: Install tree with:
sudo apt-get install tree

When apt-get install is unable to locate a package, the package is
not found withing Ubuntu repositories. Follow this instruction to add and
update repo

30

https://askubuntu.com/questions/378558/unable-to-locate-package-while-trying-to-install-packages-with-apt

who?

Machine and OS

• hostname . . . print the machine’s hostname
• uname . . . print other system information

� uname . . . Description
� uname -a . . . print all system information
� uname -m . . . print machine hardware
� uname -n . . . same as hostname

• lshw . . . print hardware configurations as root user
• lscpu . . . print CPU detail from /proc/cpuinfo
• dmidecode . . . Extract more detailed information

� sudo dmidecode -t memory . . . information about memory

Q How to access the content of /proc/cpuinfo file? (use cat)
Q How to add a user named "john" and then list all users?

31

who?

Users

• passwd . . . change your password

• who . . . print logged in users(see users)
� who am i . . . print your own username whoami

• finger . . . display information about users

32

Introduction

Run your first VM

Very basic commands with the shell

How to get help on Linux

Working with files and directories

Simple data processing

File attributes and searching

Control jobs and processes

Editors; the very powerful vim

Customizing shells and dot files

Talking to other machines and remote access

Shell programming

Getting help

• Google is your friend. Odds are, someone has had the same
question as you in the past, and has asked it on a forum website
such as StackOverflow or StackExchange.

• Man documentation man ls brings up the manual pages for ls.
Unlike Google results, manpages are system-specific.
� Use / +<keyword> to perform a search in manpage
� Use n to jump to successive search results

33

Man Overview I
man (short for manual) is the built-in help system in Linux.
Q How to access the help in a man page?
Read the man page manual: man man (type h for help and q to quit)

Man page navigation Man uses the less pager and vim keybindings.
• j . . . Forward (down) one line
• k . . . Backward (up) one line
• Crtl+f . . . Forward one window
• Ctrl+b . . . Backward one window
• g . . . Go to first line
• G . . . Go to the last line

Man Page Conventions
• bold text . . . type exactly as shown
• italic text . . . replace with appropriate argument
• [-abc] . . . arguments within [] are optional
• -a|-b . . . options cannot be used together
• argument argument is repeatable

34

Man overview II
Combining options: only one hyphen (dash) is needed for multiple
single-character options:

ls -l -h
ls -lh

The same option can come in two forms: -w, –width=COLS

ls --width=60
ls -w 60
ls -w60

Man page Sections: some commands may have man pages in different
sections. (Most commands are in Section 1, for system administrations
check Section 8, low-level Linux programming check Section 2 and 3.)

Q How to search man pages? use man -k <text>

Q How to specify which Section to use for a command? You can
specify the section to use: man <section> <command> For example:
man 2 mtools

35

man Overview III

Shell Builtins: some commands don’t have dedicated man page. These
commands are shell built-ins (internal commands).
Q Where is the man page for cd ?

� use help <command> to get help files

� use type <command> to get type of command (builtins or not?)

help while
type cd

Getting extra help with option –help:
--help
-h
ls --help

36

Introduction

Run your first VM

Very basic commands with the shell

How to get help on Linux

Working with files and directories

Simple data processing

File attributes and searching

Control jobs and processes

Editors; the very powerful vim

Customizing shells and dot files

Talking to other machines and remote access

Shell programming

Outline
Lecture 4, Sep 1, 2021

• Review Linux file system
• Learn how to manipulate and view files
• Pipes and redirects

37

File system

The File: UNIX treats everything as a file. Directories and devices like
the hard disk, DVD-ROM, and printer are files to UNIX

Three types of files

• Ordinary file: also known as a regular file, contains only data as a
stream of characters

• Directory file: a fold containing the names of other files and
subdirectories

• Device file: represents a device or peripheral (e.g., printer, scanner,
etc)

Q How to check Linux disk space for each drive?
Q How to properly mount or safely eject a hard drive? (use udisksctl)

38

The File System Hierarchy I

• UNIX files are organized in a hierarchical structure:
� "/" . . . root of the file system
� "/home/username" . . . your home directory (also ∼)
� "/bin" . . . contains important binaries or executable essential to OS
� "/sbin" . . . contains system binaries (for super user)
� "/usr/bin" . . . contains non-essential binaries
� "/usr/local/bin" . . . contains locally compiled binaries

• $PATH tells Linux where to find binaries
• which checks where the binary lives (e.g., which ls)

Q What does -> mean when files are listed (e.g., ls -l /)?
The path after -> is the source of the symbolic link

39

The File System Hierarchy II

Other important directories are

� "/boot" . . . things for booting.
� "/etc" . . . host specific configurations for applications like text

editors and web browsers
� "/lib" . . . shared libraries
� "/dev" . . . removable devices like usb drives
� "/tmp" . . . temporary files lost after reboot
� "/var" . . . variable files that change during normal operation, like

log and cache files
� "/opt" . . . optional adds-on files (rarely used)
� "/proc" . . . illusionary file created on fly for monitoring

40

Relative Pathnames

Relative path shortcuts

• . (a single dot) represents the current directory
• .. (two dots) represents the parent directory

41

Command Line Expansion

Bash can transform the command-line input using expansions

• Brace expansion {begin..end} or {begin..end..increment}
echo {Z..A}
echo Front-{A,B,C}-Back

• Arithmetic expansion $((expression))

AA=50
echo $((AA++))
BB=$((AA*2))
echo $BB

• Parameter expansion (mostly useflul in bash scripting)
echo $USER
echo $HOME

42

Making and Removing directories
Making directories

• mkdir myDir . . . creates myDir in the current directory

• mkdir myDir1 myDir2 . . . creates multiple directories in one
command

• mkdir myDir1/myDir2 . . . creates myDir2 inside myDir1 (must
exit)

Q How to create 10 directories named dir1 to dir10 in one command?
Q How to create 10 empty files?

Copy directories

• cp file1 file2 . . . copy file1 to file2

• cp -R myDir1 myDir2
� -R option copies recursively, meaning all subdirectories will be

copied as well

43

Making and Removing directories

Move directories

• mv file1 file2 . . . when used this way it’s basically a rename
utility

• mv file1 file2 myDir . . . moves file1 and file2 into the
directory myDir

Removing directories

• rm file1 file2 . . . removes both files
• rm file*

� * is a wildcard, meaning "anything", the command will remove all
patterns that match file with anything following

� can be dangerous. With the right permissions rm -Rf /* would
remove most of the files on your hard drive without warning

� protect yourself rm -i

44

Introduction

Run your first VM

Very basic commands with the shell

How to get help on Linux

Working with files and directories

Simple data processing

File attributes and searching

Control jobs and processes

Editors; the very powerful vim

Customizing shells and dot files

Talking to other machines and remote access

Shell programming

Outline
Lecture 5, Sep 3, 2021

• Simple data processing
• pipes and redirects

45

Displaying and Concatenating Files

• cat displays the contents of one or more files
• touch . . . creates new/empty files or update existing file
• cat > file . . . enter text into file (use Crtl+d to save and exit)
• Outputs by default to “stdout”, but often redirect to a file using >

cat foo.txt bar.txt > foobar.txt

46

More or Less

• more and less display files one page at a time
• use more for large file
• less is more more

� Allows movement backwards in a file
� Faster than most standard text editors

• man by default uses less

Navigation in more and less :

spacebar or f . . . one page forward

b . . . one page backward
j . . . one line forward

k . . . one line backward
/ +foo . . . searches forward expression foo

47

Simple data processing

• wc . . . counts lines, words, characters
� wc -l file . . . counts line in file
� wc -w file . . . counts word in file

• head and tail . . . prints the first and last few lines of a file
• sort . . . sorts alphabetically or numerically

Task
Download us-states.csv file from class website.
What are the first and last row?
How many lines it has?
show all lines that contains "Texas"

48

Combining and cutting streams

• paste command let you merge two or more input stream side by
side
seq 5 > serial1.txt
seq 1 5 30 > serial2.txt
paste serial1.txt serial2.txt > newserial.txt

• cut prints out selected section from each line of an input stream or
file (needs to be separate by tab if used without options)
cut -f 1,2 <file>

Task Print out only ’state’ column in us-states.csv
(hint: use delimiter option of cut)
How can we sort them alphabetically?

49

Redirect and Append

Redirect command output to a file by using >

• Think of redirection characters as arrows. For example
ls /dev > text.txt

redirects the output of ls into a new file named text.txt

Append output to the end of a file by using »
ls .proc >> test.txt

50

Stndards I/O

There are 3 std I/O file stream descriptors. Most processes initiated by
UNIX commands write to standard output (i.e., the screen), and take
their input from standard input (the keyboard). There is also standard
error.

• stdin . . . use <
• stdout . . . use > (the same as 1>)

echo 'print "hello world!" ' > hello.py
python < hello.py

Q How to do this in single command?

echo 'print "hello world!"' > hello.py && python < hello.
py

� The && means continue with next command

51

Stndards I/O

There are 3 std I/O file stream descriptors. Most processes initiated by
UNIX commands write to standard output (i.e., the screen), and take
their input from standard input (the keyboard). There is also standard
error.

• stdin . . . use <
• stdout . . . use > (the same as 1>)

echo 'print "hello world!" ' > hello.py
python < hello.py

Q How to do this in single command?
echo 'print "hello world!"' > hello.py && python < hello.

py

� The && means continue with next command

51

Std err

• stderr . . . use 2>
� redirect stderr to a file: command 2> error.txt
� most often used to redirect to nowhere

find / -name ls 2>/dev/null
� looking into very long error messages

command 2>&1

52

More on std*

Q What does this redirection mean:
command > out.txt 2>error.txt

Q Is there any alternative short form? Redirect both stderr and stdout
together? command &> output.txt

Q Can you explain the following command
curl http://www.google.com > /dev/null 2>&1

The first part >/dev/null redirects the stdout , that is curl ’s
output to /dev/null and 2>&1 redirects stderr to the stdout
(which was just redirected to /dev/null). The & is used on the right
side to distinguish stdout (1) or stderr (2) from files named 1
or 2 . So, 2>1 would have ended up creating a new file.

53

Outline
Lecture 6, Sep 8, 2021

I Continue with pipes and directs
I Learn file permissions and ownership
I What are wildcards in Linux?
I grep and find applications

54

Pipes
|

• As the name implies, a pipe (|) takes the output of one command
to the input of another command
� e,g,. ls /usr/sbin | less

• We can actually write short "programs" by stringing pipe together

tee

• Split a data stream so it follows both into a specified file and
continues as tee ’s stdout

• Useful for saving immediate steps in a long sting of pipe
� e.g., ls /usr/sbin | tee processes.txt | less

Task Use du , head , and sort comamnds to find biggest files and
directories in your $HOME

Task Find the ip address of your machine using ifconfig command,
cut , etc . (my ip is 10.0.0.**)

55

Another way to join two commands together

• The shell supports, in addition to pipes | , another way to join two
coomands together.
� Surround the substituted command with single backquotes

echo the date today is `date` and direcoty is `pwd`

56

Introduction

Run your first VM

Very basic commands with the shell

How to get help on Linux

Working with files and directories

Simple data processing

File attributes and searching

Control jobs and processes

Editors; the very powerful vim

Customizing shells and dot files

Talking to other machines and remote access

Shell programming

File Attributes
Listing of the file attributes ls -la

drwxr-xr-x 1 mohammadsarrafjoshaghani staff 70 Aug 11 17:42 .gitignore
drwxr-xr-x 17 mohammadsarrafjoshaghani staff 544 Aug 11 17:42 Figures
-rw-r--r-- 1 mohammadsarrafjoshaghani staff 12703 Aug 24 01:36 Linux.aux
-rw-r--r-- 1 mohammadsarrafjoshaghani staff 42578 Aug 24 01:36 Linux.fdb
-rw-r--r-- 1 mohammadsarrafjoshaghani staff 45202 Aug 24 01:36 Linux.fls

Structure of file permissions string

d︸︷︷︸
Type of file

Owner’s permisssions︷ ︸︸ ︷
rxw r-x︸ ︷︷ ︸

Groups’s permissions

Other’s permissions︷ ︸︸ ︷
r-x

• Types of file: plain file - , directory d , and symbolic link l

• Types of permission: allowed to read r , allowed to write w , and
allowed to execute x .

57

Change file permissions I

• chmod [mode] <file> . . . changes the permission mode of file
� chmod [category + operation + permission] file

Table: mode representation table

category operation permission
u user + add permission r read
g group - remove permission w write
o other = assigns absolute permission x execute
a all

58

change file permission II

• Octal permissions uses a single argument string of 3 digits
• Each digit of this number is a code for each of the 3 permission

levels (owner, group, other)
octal permission Significance
0 –- No permissions
1 –x Execute only
2 -w- Writable only
3 -wx Writable and executable
4 r– Read only
5 r-x Readable and executable
6 rw- Readable and writable
7 rwx Readable, writable, and exec

Q What does chmod 740 file do?

59

Changing file ownership

• chown . . . change owner
� chown <user> file . . . change ownership of file to <user>
� chown <user>:<group> file . . . change owner and group
� chown -R <user> <directory> . . . change a directory’s owner

recursively

Q How to to list users and groups on your machine?
cat /etc/passwd
cat /etc/passwd | cut -d: -f1
cat /etc/group | cut -d: -f1

60

How to find a file?

find

• find . . . recursively examines a directory tree to look for files
matching some criteria and then takes action on the selected files

Structure of a find command:

find /home︸ ︷︷ ︸
path list

selection criteria︷ ︸︸ ︷
-name index.html -print︸ ︷︷ ︸

Action (optional)

61

How to find a file
Selection criterion:

Selection criterion Selects file
-type x If of type x , where x is f , d , or l
-perm nnn If octal permissions match nnn
-links n Having n links
-user usrname If owned by usrname
-group grpname If owned by grpname
-name filename filename
-iname filename Same as above, but case-insensitive

Action

Action Significance
-print Prints selected file to stdout
-ls Executes ls -lids command on selected
-exec cmd Executes UNIX command cmd followed by {} \;

62

Find examples

• Find directories in /path/to/search :
find /path/to/search/for -type d

• Find files by case-insensitive extension, such as ’.jpg’, ’.JPG’ in
current directory: find . -iname '*.jpg'

• Recursively change permissions on files, leave directories alone
find ./ -type f -exec chmod 644 {} \;

Common problem: when searching in / directory, you encounter lots
of Permission denied error. find / -type f -perm 777

There are 2 ways to go around it:
find / -type f -perm 777 2>/dev/null
sudo find / -type f -perm 777

63

Wild cards! aka metacharacters

Used for sophisticated pattern matching sequences in several applications
in the UNIX operating system (e.g., ls, find, grep, sed, awk, vi, emacs).

• * . . . a string with any length (including zero)
� ls *.txt . . . files end in *.txt

• ? . . . a character
� ls ?? displays two character files

• [] . . . match any character in a range
� ls [aeiou]* . . . display files start with a,e,l,o,u
� ls [ˆa-zA-Z]* . . . a non-alphabetic character
� ls[a-f,o-v]* . . . start with a-e and o-v

• {} . . . a selection of names or wildcards
� cat {1,2}.txt . . . shows 1.txt of 2.txt

64

Escaping a metacharacter

• What if you want to search on . or remove file named ’chap*’?
� Use backslash \ to escape a metacharacter

� \.9 will find all occurences of ".9"

� rm chap* or rm 'chap*'

65

How to use grep?
• grep . . . global regular expression print
• grep scans its input for a pattern, and can display the selected
pattern, the line numbers, or the filenames where the pattern
occures.

Structure of a grep command

grep -i︸︷︷︸
Options

pattern︷ ︸︸ ︷
pat *.c︸ ︷︷ ︸

filename(s)

-i ignore upper/lower cases match
-n displays line numbers along with lines
-c displays count of number of occurrences

Q How do I find all files containing specific text?
grep -rnw /path/to/somewhere/ -e 'pattern'

66

Comments on grep

• You can use regular expressions in patterns and filenames
grep "wo[od,de]house" *.c

Will print all matches to either woodhouse or wodehouse in all the
C program files located in the current directory.

• Works well with pipe (|)
ls /usr/bin | grep gcc

Prints all executables in /usr/local with gcc in the command
name.

• Works well with -exec command with find
Use find to find a file matching some regular expression then use
grep to look inside the file for an additional pattern.

• see also: the Perl script ack and also fzf
� a better grep

67

Powerful awk and sed

68

Introduction

Run your first VM

Very basic commands with the shell

How to get help on Linux

Working with files and directories

Simple data processing

File attributes and searching

Control jobs and processes

Editors; the very powerful vim

Customizing shells and dot files

Talking to other machines and remote access

Shell programming

Job control

• A "process" is a running program
• Find out the current running processes

� ps (process status) . . . non-interactive
� top or htop , or bashtop . . . interactive
I check this linkfor more details on htop

• Interup a running processes
� Crtl+d . . . terminate input or exit the shell
� Crtl+z . . . suspend foreground processes
� Crtl+c . . . kill foreground processes

69

https://codeahoy.com/2017/01/20/hhtop-explained-visually/

Other job control operations

• & . . . run at backgorund
• jobs . . . show the active processes

• fg . . . bring to foreground

• bg . . . put to backgournd

• kill . . . terminate a process
• kill -15 <pid> . . . to kill a process gracefully

• kill -9 <pid> . . . to kill a process forcefully

70

Introduction

Run your first VM

Very basic commands with the shell

How to get help on Linux

Working with files and directories

Simple data processing

File attributes and searching

Control jobs and processes

Editors; the very powerful vim

Customizing shells and dot files

Talking to other machines and remote access

Shell programming

Editing a file in terminal

In order to edit files within the terminal, you need to use a text editor.

The choice of text editor is a personal one.

The two most popular text editors are vim and emacs

Figure out which one you like, if either I use vim. Both editors have their
own keystrokes for doing basic things like file navigation, inserting,
deleting, saving, etc.

Check here for a discussion on vi and emacs learning curves

71

https://stackoverflow.com/questions/10942008/what-does-emacs-learning-curve-actually-look-like

The vi/vim editor

vi

• The standard UNIX file editor
� Originally written by Bill Joy (of Sun Micro systems) when he was a

student at Berkeley working on BSD UNIX
• Found by default on every UNIX system
• vim is vi improve

� Written by Bram Moolenaar
� Standard editor on most Linux systems
� Today vi and vim are usually spoken interchangeably to mean

vim
• To edit a file type: vi <file>

72

vim modes

• Normal mode
� Move around file
� Copy and paste text
� Search and replace

• Insert mode
� Insert text

73

Insert mode
Enter insert mode from normal mode

Command Function

i insert text left of cursor

a append text right of cursor

I Insert text at beginning of line

A Append text to the end of line

o open new line below current line

O Open new line above current line

r replace a single character under cursor

R Replace all text to the right of cursor (overwriting)

s replace a single character under cursor and stay in Insert Mode

S replace a Single character under cursor and all other characters in the line

I use esc to get back to normal mode
74

Motions in vim

Motions are the keys associated with moving around in Vim

• h , j , k , l . . . left, down, up, right

• w , W . . . to start of next word or WORD
• b , B . . . to start of previous word or WORD
• e , E . . . to end of word or WORD
• $. . . to end of the line
• ˆ . . . to first word in line
• 0 or | . . . to move beginning of the line

• <numb>G or <num>| . . . to line num or to column num

75

Scrolling normal mode

Command Function
Crtl+f scrolls full page forward
Crtl+b scrolls full page back
Crtl+d scrolls half page
Crtl+u scrolls half page back

76

Simple text editing normal mode

Deleting text

Command Function
x deletes single character under cursor
X delete text left of the cursor
dd delete entire line

Moving text

Command Function
p puts text to right of cursor
P Puts text to left of cursor
J Join the current line with the one below
» indent line
« de-indent line

77

Learn to speak vim!
Using vim is like talking to your editor

Rule 1: operator motion sentences

• Learn some verbs (or operators): v (visual), c (change), d (delete),
y (yank/copy)

• learn some text subjects (or motions): w (word), s (sentence), p
(paragraph), b (block/parentheses), t (tag, works for html)

Speak to the editor in sentences

• d$. . . delete to end of the line
• yW . . . copy till end of the WORD

• cE . . . delete till end of the word and go to insert mode

Rule 2: use COM which means [count] operator motion

• 3dw . . . delete a word 3 times
78

Learn to speak vim!
Rule 3: speak in more details operator modifier motion

• learn some modifiers: i (inside), a (around), t (till..finds a char), f
(find...like till except including the char), / (search..find a string)

• diw (delete inside word) . . . delete the current word
• cis (change inside sentence) . . . change the current sentence
• ci" (change inside quote) . . . change a string inside quotes
• c/foo (change search foo) . . . change until next occurrence of ’foo’
• ctX . . . change everything from here to the letter
• vap (visual round paragraph) . . . visually select this paragraph

Rule 4: when an operator is called twice it produce its effects on the
entire line

• dd . . . delete whole line
• yy . . . yank whole line
• cc . . . delete whole line and go to insert mode

79

Recording a macro!

To enter a macro use: q <letter> <commands> q

The complete process looks like:

1. qd start recording to register d
� Each register is identified by a letter "a" to "z"

2. · · · your complex series of commands
3. press q to stop recording

4. @d execute your macro
5. @@ execute your macro again

80

Search and replace

Command Function
/<pat> searches forward for <pat>
?<pat> searches backward for <pat>
n repeats search in same direction
N repeats search in opposite direction
:n1,n2s/<s1>/<s2> replaces first occurrence of string or regular

expression s1 with string s2 in lines n1 to n2
:%s/find/look/g replaces all occurrences of find

Visual selection

Command Function
v activates character-by-character highlighting
V activates line-by-line highlighting

81

Other useful editing commands

Command Function
u undo last command
U undo all changes to line
. repeat last command
:ab create shortcut
:ab fb foobar shortcuts key sequence fb to foo

82

Exit vim
Enter ex mode with :

Command Function
:w saves file and remains in insert mode

:x or :wq saves file and quits insert mode
:w newfile "save as", creates newfile
:w! as above, but overwrite existing file
:q quits vi/vim
:q! quits without making changes
:!cmd runs shell cmd and returns

Tips

• The earlier you get used to navigating with j , k , l , m , etc.
the better. Don’t use the arrow keys!

• Customize your settings (again .vimrc) Learn about vim plugins
83

Customizing vim

• vim can be tailored by redefining keys or abbreviating frequently
used expressions.

• Many preset customizations are available via the :set <command>
� Available from ex mode
� :set all lists all available preset settings
� Setting can be undone by :set no<command> , for example

set nonumber

I Some popular :set commands are:
� autoindent . . . next line starts at previous indent level
� showmatch . . . shows momentarily a match to a (or {
� ignorecase . . . ignores case when searching patterns

84

Mapping keyboard keys

• The :map command allows you to map keyboard shortcuts
• Examples:

� Lock line marker at the top: map j jzt
� To map the g key in Normal mode to save the buffer (i.e., :w)

:map g :wˆM
I vim interprets the ˆM commands as Enter

• To make key sequences in Insert mode use :map!

• Use :unmap (unmap!) to undo key sequence mappings

85

The .vimrc file

• Place all commonly used :set commands, keyboard mappings, and
abbreviations in a file named .vimrc in ∼ directory (create if necessary)

� To start you can download a minimal .vimrc from course website
wget -O ∼/.vimrc https://msarrafj.github.io/CAAM519-FA21/Files/dotfiles/vimrc_minimal

� View or download my everyday .vimrc file
wget -O ∼/.vimrc https://msarrafj.github.io/CAAM519-FA21/Files/dotfiles/vimrc

� or check Vim Bootsrap for easy configuration set-up
• Keep a master copy of your .vimrc file in a Dropbox folder or git repo

and symbolically link (ln -s) to it on all your UNIX machines so you
always have the most up-to-date version

86

https://vim-bootstrap.com/

vim plugin for extra features

We first need a plugin manager to install and update plugins. I use
vim-plug but there are others (pathogen and vundle)

To start using it

• Download plug.vim and put it int the "autoload" directory
curl -fLo ∼/.vim/autoload/plug.vim --create-dirs \
https://raw.githubusercontent.com/junegunn/vim-plug/master/plug.vim

• Append the following in ∼/.vimrc
call plug#begin('∼/.vim/plugged')
Plug 'preservim/nerdtree'
call plug#end()

• Install all plugins in ex mode
:PlugInstall

• Source .vimrc file

87

https://github.com/junegunn/vim-plug

Further resources

There are some excellent resources on the internet to master vim such as:

• Learn Vimscript the Hard Way for general vim script needs
• Writing Vim Plugins for plugins, specifically

88

https://learnvimscriptthehardway.stevelosh.com/
https://stevelosh.com/blog/2011/09/writing-vim-plugins/

Introduction

Run your first VM

Very basic commands with the shell

How to get help on Linux

Working with files and directories

Simple data processing

File attributes and searching

Control jobs and processes

Editors; the very powerful vim

Customizing shells and dot files

Talking to other machines and remote access

Shell programming

Shell offerings

• How to list available valid shells? (check /etc/shells)
• Two main categories

� The Bourne family
I Bourne (/bin/sh), Kron (/bin/ksh), Bash (/bin/bash), and Zsh

(/bin/zsh)
� The C Shell (/bin/csh)

I Tsch (/bin/tcsh)

• Bash and C are the most common
� Bash is default on Linux
� To list your shell invoke echo $SHELL

Check this post for more info on different shells

89

https://stackoverflow.com/questions/5725296/difference-between-sh-and-bash

Customizing Bash

Customizing your .bashrc file can greatly improve your workflow and
increase your productivity. The main benefits of configuring the .bashrc
file are:

• Permanantly modify Enviroment Variables
• Adding aliases allows you to type command faster
• Adding functions allows to save and return complex codes
• Display useful system information
• Custimomize the Bash prompt (colors, etc)

90

Add Env Variables
Environment variables are known to the shell and can be used by all
programs run by the shell. Three important commands are:

common env variable significance
HOME home directory
PATH list of dir searched by shell to locate command
LOGNAME login name of user
TERM type of terminal
PWD absolute pathname of current dir
PS1 primary prompt string
SHELL user’s login shell

• To add new entries to the existing PATH use the notation:
� PATH=/my/new/path:$PATH

which adds /my/new/path to front of existing PATH
� or: PATH=$PATH:/my/new/path

adds /my/new/path behind existing PATH

91

Environment variables

• which . . . shows the command full path (handle different versions?)
• env . . . list all environment variables/settings
• Use export VARIABLE=value to set a new env variable

92

More on export

Type a=20 ; this defines a variable a which will be known to all
subsequent commands you issue in this shell (but not to a new shell).
how to make it accessible to every bash? (use export command)

export a=20
echo $a

/bin/bash #start a new shell
echo $a
exit

→ If we want to make our changes permanent, we can add them to our
shell startup files. The startup file name will vary based on OS and
shell, but for the bash shell, it is
∼/.bashrc on Linux or ∼/.bash_profile on MacOS.

93

Aliases and functions

• alias <myAlias>='longer command' assigns shorthand names
for common commands. Some useful aliases:
alias c='clear'
alias h='history 20'
alias ..='cd ..'
alias ...='cd ../..'

• Functions are great for more complicated codes
function find_largest(){

du -h -x -- * | sort -r -h | head -20;
}

check this page out to get colored bash and this one for more fun scripts

94

https://askubuntu.com/questions/517677/how-do-i-get-a-colored-bash
https://www.freecodecamp.org/news/bashrc-customization-guide/

The initialization scripts
We can set or change the default behavior of the env variables, aliases,
etc to persist from login-to-login or when a new sub-shell (e.g.,
/bin/bash) is launched. We do this with two files

• A login script (also called a profile) which is executed only once.
• One of these three files in this order:

I ∼/.bash_profile
I ∼/.profile
I ∼/.bash_login

• A run command script, which is executed every time an interactive
sub-shell is launched.
I ∼/.bashrc

→ Never forget to source the scripts

� source ∼/.bashrc

� . ∼/.bashrc

95

The login script

In your login script:

• Environment variable changes or additions
• Custom shell variables
• Startup messages
• If you make changes to this file, you will have to source it from the

current shell or logout and login
� e.g. source ∼/.profie

96

Terminal management

tmux is a very useful terminal multiplexer (similar to GNU screen)

• tmux . . . start tmux
• prefix key + % or prefix key + " . . . split panes vert or horiz

� default prefix is Crtl+b ; but some people map it to Crtl+a

• exit . . . close a pane
• prefix + c . . . create a new windows
• prefix + z . . . fullscreen a pane
• prefix + w shows all windows

97

session handling with tmux

• tmux ls . . . list all running sessions
• prefix + d . . . detach from tmux (process runs in the bg)
• tmux attach -t 0 . . . reattach to session "0"

→ You can download my ∼/.tmux.conf from website
wget -O ∼/.tmux.conf https://msarrafj.github.io/CAAM519-FA21/Files/dotfiles/tmux.conf

98

Introduction

Run your first VM

Very basic commands with the shell

How to get help on Linux

Working with files and directories

Simple data processing

File attributes and searching

Control jobs and processes

Editors; the very powerful vim

Customizing shells and dot files

Talking to other machines and remote access

Shell programming

Connect to other machines

• Once you know the username, password, and IP address of the
remote computer you can connect to it via SSH:
ssh <username>@<ip-addr>

• To get IP address of a Windows, type ipconfig in powershell
and for any *nix machine use ifconfig command.

• use -X option for ssh to enable X11 forwarding (access to GUI). It is
going to be annoying slow.

99

practice ssh
Task Connect to Clear, a Linux cluster available to Rice students for
class room purpose <riceID>@ssh.clear.rice.edu Get the number
of CPU and CPU model of this machine

Task Connect from your host machine to your Ubuntu VM.
You may follow theses steps:

i. get the ip address of your VM machine
ii. set an unused port to your VM
iii. enable SSH on VM machine by installing openssh-server

iv. start VM in your terminal
VBoxManage startvm Ubuntu --type headless

v. ssh to your VM
ssh -p 3022 <username>@127.0.0.1

read more here

To set up passsword-less SSH login (passwd needed only once) via
ssh-keygen command follow this link.

100

https://linuxize.com/post/how-to-enable-ssh-on-ubuntu-18-04/
https://askubuntu.com/questions/46930/how-can-i-set-up-password-less-ssh-login

Data transfer in Linux Systems

• Use scp (Secure Copy) for file and folder transfers to/from a
remote server where you have a user account:
scp ./HostFile <username>@<server>:<path/to/file>
scp <username>@<server>:<path/to/file/RemoteFile> .

I first command transfers a HostFile in current dir to remote server at
path/to/file directory

I second command transfers RemoteFile in remote server to current
directory (i.e. .).

• Use -r option (recursive) if you want to transfer a directory

101

Archiving/pack/unpack files

Use tar command

1. Create an archive from foo directory

tar -cvf target.tar file1 file2 file3

� -z compresses the resulting archive with gzip(1)
tar -cvzf target.tar.gz file1 file2 file3

2. Unpacking/extracting a file in verbose mode:
tar -xvzf /path/to/foo.tar.gz
tar -xvzf /path/to/foo.tar.gz -C /path/to/directory

3. List the contents of a tar file:
tar -tvf source.tar.gz

102

practice tar and scp

Task

• download "hw1_materials.tar.gz" from course website
• unpack it
• transfer "us-states.csv" to home directory of your virtual machine

103

Introduction

Run your first VM

Very basic commands with the shell

How to get help on Linux

Working with files and directories

Simple data processing

File attributes and searching

Control jobs and processes

Editors; the very powerful vim

Customizing shells and dot files

Talking to other machines and remote access

Shell programming

Write a shell script

• The convention is to use the ".sh" extension
• Can pass command line arguments to the script
• Loop and choice constructs are available

� if . . . then . . . else . . . fi
� while . . . do . . . done
� for . . . do . . . done
� Combine above to create powerful tools

104

bash scripting: hello world
1 #!/bin/bash
2 echo "Hello world"
3

4 # Each command starts on a new line, or after a semicolon:
5 echo 'This is the first line'; echo 'This is the second line'

Note: when you create your bash script, you will have to change the
“permissions” of it to run, via

chmod +x hello_world.sh

and for running it you use the command

./hello_world.sh

105

declare variables
• first line is the shebang which tells the system how to execute the script
• comments start with #
• spaces (unlike indentation) are very important

1 #!/usr/bin/env bash
2 # Declaring a variable looks like this:
3 Variable="Some string"
4 # But not like this:
5 Variable = "Some string" # => returns error "command not found"
6 # Nor like this:
7 Variable= 'Some string' # => returns error: "command not found"
8

9 # Using the variable:
10 echo $Variable # => Some string
11 echo "$Variable" # => Some string
12 echo '$Variable' # => $Variable
13

14 # Parameter expansion ${ }:
15 echo ${Variable} # => Some string
16 # String substitution in variables
17 echo ${Variable/Some/A} # => A string
18 # This will substitute the first occurrence of "Some" with "A"
19 echo ${#Variable} # => 11 (which is string length)

106

declare arrays

1 #! /bin/bash
2 # Declare an array with 6 elements
3 array0=(one two three four five six)
4 # Print first element
5 echo $array # => "one"
6 # Print first element
7 echo ${array[0]} # => "one"
8 # Print all elements
9 echo ${array[@]} # => "one two three four five six"

10 # Print number of elements
11 echo ${#array[@]} # => "6"
12 # Print number of characters in third element
13 echo ${#array[2]} # => "5"
14 # Print 2 elements starting from forth
15 echo ${array[@]:3:2} # => "four five"
16

17 # Print all elements. Each of them on new line.
18 for i in "${array0[@]}"; do
19 echo "$i"
20 done

107

built-in variables

• There are some useful built-in variables like

1 echo "Last program's return value: $?"
2 echo "Script's PID: $$"
3 echo "Number of arguments passed to script: $#"
4 echo "All arguments passed to script: $@"
5 echo "Script's arguments separated into different variables: $1

$2..."↪→

• we can also get access to built-in (or env) variables

1 echo "I'm in $(pwd)" # execs `pwd` and interpolates output
2 echo "I'm in $PWD" # interpolates the variable

108

more bash

• reading a value from input

1 echo "What's your name?"
2 read Name # Note that we didn't need to declare a new variable
3 echo Hello, $Name!

Task Write a script that reads your first and last name (two
variables) from input and print

1 START oF FILE
2 my name is:
3 END oF FILE

109

bash conditionals
• There is also conditional execution

1 echo "Always executed" || echo "Only executed if 1st command
fails"↪→

2 # => Always executed
3 echo "Always executed" && echo "Only executed if first command

does NOT fail"↪→

4 # => Always executed
5 # => Only executed if first command does NOT fail

• To use && and || with if statements, you need multiple pairs of square
brackets:

1 if ["$Name" == "Steve"] && ["$Age" -eq 15]
2 then
3 echo "This will run if $Name is Steve AND $Age is 15."
4 fi
5

6 if ["$Name" == "Daniya"] || ["$Name" == "Zach"]
7 then
8 echo "This will run if $Name is Daniya OR Zach."
9 fi

I = and == are for string comparisons, -eq is for numeric ones. -eq is in
the same family as -lt, -le, -gt, -ge, and -ne

110

for loop
• For loops iterate for as many args givens

1 # The contents of $Variable is printed three times.
2 for Variable in {1..3}
3 do
4 echo "$Variable"
5 done
6 # Or write it the "traditional for loop" way:
7 for ((a=1; a <= 3; a++))
8 do
9 echo $a

10 done

• They can also be used to act on files..

1 # This will run the command `cat` on file1 and file2
2 for Variable in file1 file2
3 do
4 cat "$Variable"
5 done
6 # This will `cat` the output from `ls`.
7 for Output in $(ls)
8 do; cat "$Output"; done

111

while loop

• While the condition is met keep iterating

1 # while loop:
2 while [true]
3 do
4 echo "loop body here..."
5 break
6 done
7 # => loop body here...

112

bash functions
1 # Definition:
2 function foo ()
3 {
4 echo "Arguments work just like script arguments: $@"
5 echo "And: $1 $2..."
6 echo "This is a function"
7 return 0
8 }
9 # Call the function `foo` with two arguments, arg1 and arg2:

10 foo arg1 arg2
11 # => Arguments work just like script arguments: arg1 arg2
12 # => And: arg1 arg2...
13 # => This is a function
14

15 # or simply
16 bar ()
17 {
18 echo "Another way to declare functions!"
19 return 0
20 }
21 # Call the function `bar` with no arguments:
22 bar # => Another way to declare functions!
23

24 # Calling your function
25 foo "My name is" $Name

113

some gotchas

• never use test as the name of a variable or shell script file
• when using = as an assignment operator, do not put blanks around
it

• when using = as a comparison operator, you must put blanks
• when using if [] put spaces around the brackets

→ see https://devhints.io/bash for bash scripting syntax.

114

https://devhints.io/bash

final example
Task Can you explain what does this program do

1 #! /bin/sh
2 # list names of all files containing given words
3 if [$# -eq 0]
4 then
5 echo "enter word1 word2 word3 ..."
6 echo "lists names of files containing all given words"
7 exit 1
8 fi
9 for fyle in *; do

10 bad=0
11 for word in $*; do
12 grep $word $fyle > /dev/null 2> /dev/null
13 if [$? -ne 0]
14 then
15 bad=1
16 break
17 fi
18 done
19 if [$bad -eq 0] then
20 echo $fyle
21 fi
22 done
23 exit 0

115

	Introduction
	Run your first VM
	Very basic commands with the shell
	How to get help on Linux
	Working with files and directories
	Simple data processing
	File attributes and searching
	Control jobs and processes
	Editors; the very powerful vim
	Customizing shells and dot files
	Talking to other machines and remote access
	Shell programming

