
Fall 2021: Computational Science I

Instructor: Mohammad Sarraf Joshaghani
(m.sarraf.j@rice.edu)

Module 4: C programming

1

history of the c programming language

• created at bell labs by dennis ritchie (1972-1973).

• a following up to the b programming language, which was created by
ken thompson in 1969.

• code written in c is generally very portable.

• it is a compiled language, meaning that you need a
system-dependent compiler to convert your typed computer program
to machine instructions (as opposed to matlab in which you just
write “scripts” that do not need to be compiled).

• updates to the language: C89, C90, C99, C11, C18. C18, released in
2018, is the current standard.

https://en.wikipedia.org/wiki/C_(programming_language)

2

https://en.wikipedia.org/wiki/C_(programming_language)

what do we need to begin?

a compiler: your ubuntu os should have c compilers installed, which can
be run via the commands: cc or gcc. try typing

gcc -v

in your terminal to see the version of your compiler and how it is
configured.

a compiler will be the tool that we use to convert our typed code into
machine instructions.

3

a brief detour regarding compilers

gcc refers to the C compiler from the GNU Compiler Collection.

g++ refers to the C++ compiler from the GNU Compiler Collection.

cc is probably the same thing as gcc on linux operating systems.

~$ which cc
/usr/bin/cc
~$ ls -l /usr/bin/cc
lrwxrwxrwx 1 root root 20 May 27 2017 /usr/bin/cc -> /etc/alternatives/cc
~$ ls -l /etc/alternatives/cc
lrwxrwxrwx 1 root root 12 May 27 2017 /etc/alternatives/cc -> /usr/bin/gcc
~$ which gcc
/usr/bin/gcc
~$

the above terminal commands show that cc is soft-linked to gcc, so
either of these commands will do the same thing.

4

GNU Compiler Collection

this is a collection of compilers for many languages that is open-source.

created by the GNU Project, an open-source software “mission” initiated
in 1983 by Richard Stallman.

GNU stands for “GNU’s not Unix,” which is apparently called a recursive
acronym. Unix was a proprietary os at the time.

https://en.wikipedia.org/wiki/GNU_Compiler_Collection

5

https://en.wikipedia.org/wiki/GNU_Compiler_Collection

tentative outline

• structure and syntax of a c program

• declaration of variables

• binary representation of a variable

• functions

6

structure and syntax of a c program
there are generally two types of files that comprise a c programming
project:

1. header files with an extension “.h”

2. source files with an extension “.c”

header files contain prototypes of functions and structs.

source files contain implementation of functions. one of your source files
must have a main function. this is the first function which is executed by
the program.

1 // hello world example

2 #include <stdio.h>

3
4 int main()

5 {

6 printf("%s", "hello world !!\n");

7 }

../example/example hello world/hello world.c

7

what is in a source file?
the source file contains code of three different flavors:

• preprocessor instructions, or “directives” beginning with #.

• simple instructions ending in a semicolon.

• multiple instructions contained in curly braces { and }.

1 // hello world example

2 #include <stdio.h>

3
4 int main()

5 {

6 printf("%s", "hello world !!\n");

7 }

../example/example hello world/hello world.c

line 1 contains the inclusion of the standard input/output header file.

line 4 is the beginning of the main function.

line 6 calls a function defined in the standard input/output for writing to
the terminal. 8

preprocessor directives
note that you do not need a semicolon after the line #include blah.h.
this directive actually inserts the contents of the header file blah.h

directly into the code.

you can also use preprocessor directives to define parameters or functions.

1 // preprocessor directives example

2 #include <stdio.h>

3 // a macro that defines a random number

4 #define A_RANDOM_NUMBER 15.2

5
6 int main()

7 {

8 // print out the number

9 printf("%s %f %s", "check out this random number ... ",

A_RANDOM_NUMBER , "\n");

10 }

../example/example preprocessor/preprocessor.c

line 4 is called a macro that defines a parameter A_RANDOM_NUMBER.
what happens in this case is that before the code is compiled, all
instances of A_RANDOM_NUMBER in the source code are replaced with the
value provide in the directive, i.e. 15.2.

9

c language syntax

• lower case a through z and upper case A through Z

• numbers 0 through 9

• special characters like %, &, #, etc

note that lower and upper case letters are actually different characters in
the c alphabet!

letters and numbers you can use in defining names for variables and
functions are

a through z, A though Z, 0 through 9, and underscore “_”

these names can have up to 31 characters and cannot start with a
number.

10

keywords

these are very special words in C and cannot be used as names for
variables, functions, etc.

auto break case char const continue default do

double else enum extern float for goto if

int long register return short signed sizeof static

struct switch typedef union unsigned void volatile while

11

basic variables types in c

• char, a character

• int, an integer

• float, real single precision

• double, real double precision

• void, usually used for a function that returns no value, like

void a_function_example/example(int foo)

{

// some implementation

}

or when a function takes no parameters

int another_function_example/example(void)

{

// another implementation

}

12

binary representation of variables

your computer will store variables as sequences of 1’s and 0’s.

individual 1’s and 0’s are called bits.

“bit” is a portmanteau of “binary digit.”

a sequence of 8 bits is called a byte.

each data type, char, int, ... are composed of a fixed number of bytes.

01110101 ← a single byte!

think about punch cards back in the day... either a hole could be
punched or not, corresponding to 0 or 1.

https://en.wikipedia.org/wiki/Bit

13

https://en.wikipedia.org/wiki/Bit

a first example: binary representation of integers

binary integer representation corresponds to its base-2 representation.

before we discuss base-2, let us review base-10.

recall that the integer 1532 can be expressed as:

1532 = 1× 103 + 5× 102 + 3× 101 + 2× 100

the blue numbers correspond to the digit in the base-10 representation,
and the red numbers correspond to the digit location, with the right-most
location corresponding to the power zero, moving from right-to-left.

sometimes (usually never), we use a subscript to indicate that the
representation of a number is in base-10:

(1532)10

14

base-b representation

for a positive integer b, a number represented in base-b would be:

(aNaN−1...a0)b = aN × bN + aN−1 × bN−1 + . . .+ a0 × b0

where the ai ’s are the “digits” and are integers between 0 and b − 1.

question: given a number in base-10, (β)10, how do we represent it in
base-b for any positive integer b?

(β)10 = aN × bN + aN−1 × bN−1 + . . .+ a0 × b0

15

converting from base-10 to base-b

if we assume that (β)10 > 0, we can use the following fact: there exists
unique integers q and r so that:

(β)10 = q × b + r with 0 ≤ r < b.

q is called the quotient and r is called the remainder.

the mod operator in the c language is denoted “%” and will give us the
remainder for a given base b, for example (if b = 2):

11 % 2 = 1

since 11 = 5× 2 + 1.

the quotient operator denoted “/” will give us the quotient:

11 / 2 = 5

so that we can write 11 = (11 / 2)× 2 + 11 % 2.

16

an example converting from base-10 to base-2

suppose we want to express (1532)10 in base-2, i.e. we need to identify
numbers a0, . . . aN , which are either 0 or 1, so that:

(1532)10 = aN × 2N + aN−1 × 2N−1 + . . .+ a0 × 20,

so our number in base-2 is:

(1532)10 = (aNaN−1 . . . a0)2.

Let us assume N > 1 (why is this true for this example?). Notice that we
can express (1532)10 using the quotient and remainder with 2 as the
divisor:

(1532)10 = (aN × 2N−1 + aN−1 × 2N−2 + . . .+ a1)︸ ︷︷ ︸
= quotient

×2 + a0︸︷︷︸
= remainder

so we can immediately identify the first digit on the right:

a0 = (1532)10 % 2

17

an example converting from base-10 to base-2

we can continue this process in the same way to identify a1:

quotient from previous = aN × 2N−1 + aN−1 × 2N−2 + . . .+ a1

so a1 = quotient % 2.

we can continue this process to identify all the other base-2 digits.

when does this process terminate?

exercise 1: convert (1005)10 to base 2.

exercise 2: convert (100)10 to base 16.

exercise 3: convert (2000)10 to base 3.

exercise 4: convert (15)10 to base 16.

18

exercise 1 worked out

1005 = 502× 2 + 1 =⇒ a0 = 1

502 = 251× 2 + 0 =⇒ a1 = 0

251 = 125× 2 + 1 =⇒ a2 = 1

125 = 62× 2 + 1 =⇒ a3 = 1

62 = 31× 2 + 0 =⇒ a4 = 0

31 = 15× 2 + 1 =⇒ a5 = 1

15 = 7× 2 + 1 =⇒ a6 = 1

7 = 3× 2 + 1 =⇒ a7 = 1

3 = 1× 2 + 1 =⇒ a8 = 1

1 = 0× 2 + 1 =⇒ a9 = 1

so we have (1005)10 = (1111101101)2

19

binary representation for integers

type bytes bits value range
int 4 32 −231 to 231 − 1

short int 2 16 −215 to 215 − 1
long int 8 64 −264 to 264 − 1

unsigned short int 2 16 0 to 216 − 1
unsigned long int 8 32 0 to 232 − 1

if a numeric variable is unsigned, then all the bits can be used to
represent the numeric value. otherwise, one of the bits refers to the
variable’s sign.

20

example showing number of bytes

the sizeof function returns the storage size of a given variable type. the
returned size is a multiple of the storage size for a char, which happens
to be 1 byte.

1 #include <stdio.h>

2
3 int main(void){

4
5 printf("size of char: %ld bytes \n", sizeof(char));

6 printf("size of int: %ld bytes \n", sizeof(int));

7 printf("size of float: %ld bytes \n", sizeof(float));

8 printf("size of double: %ld bytes \n", sizeof(double));

9
10 printf("size of short int: %ld bytes \n", sizeof(short

int));

11 printf("size of long int: %ld bytes \n", sizeof(long

int));

12 printf("size of long double: %ld bytes \n", sizeof(long

double));

13 }

../example/example sizeof/sizeof.c

21

value ranges for integers

for a signed int, 1 bit is used for the sign, so we have 31 bits leftover
which are either 0 or 1. a couting argument would imply that 231 distinct
integers can represented with 31 bits, i.e.

(2 choices for 2nd bit)× (2 choices for 3rd bit)

× . . .× (2 choices for the 32nd bit) = 231 distinct integers

for a positive sign, since one of the possible integers is 0, the maximum
positive integer is 231 − 1.

another possible way to argue this is to figure out the largest possible
integer you can represent with 31 bits:

2k−1 + 2k−2 + . . .+ 21 + 20 = 2k − 1 for k ≥ 1.

exercise: try showing the above statement inductively.

22

what is wrong with this program?

1 // value range example

2 #include <stdio.h>

3
4 int main()

5 {

6 unsigned int foo = 66000;

7 unsigned short int blah = 66000;

8 printf("%s %d\n", "the value of the unsigned int variable

foo is ", foo);

9 printf("%s %d\n", "the value of the unsigned short int

variable blah is ", blah);

10 }

../example/example valueranges/valueranges.c

23

binary representation for other data types

it is not entirely obvious how to represent float’s or char’s or other
data types using a binary representation. because of this, certain
standards have been adopted for representing these types.

for example/example, a float is represented by 4 bytes (32 bits). for the
binary32 format from the IEEE 754 standard, one of those is for the
sign, 8 are for the exponent, and 23 are for the mantissa.

let the bits for a float be denoted b31, . . . , b0. the representation is:

(−1)b31 × 2(b30...b23)2−127 ×

(
1 +

23∑
i=1

b23−i2
−i

)
.

irrational numbers must first be rounded according to rules specified by
the IEEE 754 standard.

https://en.wikipedia.org/wiki/Single-precision_

floating-point_format

24

https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Single-precision_floating-point_format

variable definition and declaration

A variable must undergo the following three steps before it can be used
by the program

1. definition of the variable: allocate memory for storage.

2. declaration of the variable.

3. initialization: set the value of variable.

extern can be used to declare a variable which can then be defined
somewhere else.

static variables are either global or local. global static variables have
scope within the entire file they are defined. local static variables have
scope in their function of definition.

const can be used to fix the value of the variable.

25

example using extern

1 # include <stdio.h>

2 // declaration of float p

3 extern float p ;

4 int main (void){

5 // definition , declaration and initialization of int y

6 int y = 1;

7 printf ("y = %d \n", y);

8 printf ("p = %f \n", p);

9 }

../example/example variables/variables.c

1 // definition and initialization of a float y

2 float p = 3.14159;

../example/example variables/foo.c

compile these two source files as

gcc -o main variables.c foo.c

26

example using static

1 # include <stdio.h>

2 // declaration and initialization of a global static

variable

3 int foo = 10;

4
5 int my_function ()

6 {

7 // declaration of a local static variable

8 static int blah = 23;

9 printf("print foo in my function = %d \n", foo);

10 printf("print blah in my function = %d \n", blah);

11 }

12
13 int main (void)

14 {

15 printf("print foo in main = %d \n", foo);

16 printf("print blah in main = %d \n", blah);

17 my_function ();

18 }

../example/example static/static.c

27

difference between static and const
1 # include <stdio.h>

2 // declaration and initialization of a global static

variable

3 static int foo = 10;

4
5 int my_function ()

6 {

7 // setting value of static variable

8 foo = 15;

9 printf("print foo in my function = %d \n", foo);

10 }

11
12 int main (void)

13 {

14 printf("print foo in main before my_function () call = %d

\n", foo);

15 my_function ();

16 printf("print foo in main after my_function () call = %d

\n", foo);

17 const double blah = 14.258;

18 // setting value of const variable ... cannot do this !!

19 blah = 20.0;

20 }

../example/example static/const vs static.c

28

function declaration

functions in c have the follwing syntax:

return_value function_name(input parameters)

{

// some implementation

}

generally, functions must be implemented above the function which
call them in the source file. this requirement can be hard to deal with if
you have a ton of functions that call each other.

29

incorrect function declaration

1 int main()

2 {

3 int foo = 1;

4 int blah = plus_one(foo);

5 }

6
7 int plus_one(int foo)

8 {

9 return foo + 1;

10 }

../example/example functions/incorrect.c

30

correct function declaration

1 int plus_one(int foo)

2 {

3 return foo + 1;

4 }

5
6 int main()

7 {

8 int foo = 1;

9 int blah = plus_one(foo);

10 }

../example/example functions/correct v1.c

31

correct function declaration

1 // function prototype

2 int plus_one(int foo);

3
4 int main()

5 {

6 int foo = 1;

7 int blah = plus_one(foo);

8 }

9
10 // function implementation

11 int plus_one(int foo)

12 {

13 return foo + 1;

14 }

../example/example functions/correct v2.c

32

correct function declaration

1 // include header file that has function prototypes

2 #include "correct_v3.h"

3
4 int main()

5 {

6 int foo = 1;

7 int blah = plus_one(foo);

8 }

9
10 // function implementation

11 int plus_one(int foo)

12 {

13 return foo + 1;

14 }

../example/example functions/correct v3.c

1 // function prototype

2 int plus_one(int foo);

../example/example functions/correct v3.h

33

command line arguments

it is often useful to pass arguments into the main function on the
command line. this can be done by including an int parameter argc and
char** parameter argv in the main function:

int main(int argc, char* argv[])

{

// stuff here

}

the integer argc is equal to the number of command line inputs,
including the executable ./main, and the pointer to a collection of
character pointers argv contains all of those inputs.

34

include guards

also called “macro guard,” “file guard,” “guard rails.”

this thing is a piece of code that can be added in the header file to make
sure code is not included multiple times.

1 #ifndef EX_HEADER_COMP_H

2 #define EX_HEADER_COMP_H

3
4 int add_int(int ,int);

5
6 extern double MY_PI;

7
8 #endif

../example/example include guard/ex header comp.h

important: names for include guards should be consistent and unique.

https://en.wikipedia.org/wiki/Include_guard

35

https://en.wikipedia.org/wiki/Include_guard

pointers

a pointer is a variable that contains the address of a variable,
as defined by Kernighan and Ritchie.

why: with pointers, we can deal with variable values directly,
instead of copies of them.

since all we need to represent a pointer is an address in memory, they are
more efficient to deal with, like for example, as parameters passed into
functions.

pointers directly “point” to the variable data in memory.

36

declaration of pointers

pointers are declared by putting an asterisk before the variable name:

int* foo_ptr;

or

int *foo_ptr;

are both fine declarations. a pointer can be initialized to the “zero”
pointer as follows:

int* foo_ptr = NULL;

37

memory addresses and operators

the address of variable in memory is the first byte of memory in which
the variable is stored. this means it is important for pointers to be
declared with the appropriate type so that “it knows” how many bytes
down-the-line correspond to the given variable.

the two important operators for pointers are:

• & ← the “address-of” operator.

• *← the “value-of” operator. when used, it is called “dereferencing.”

so if we declare a double variable as

double blah

then &blah would be the corresponding pointer. if we have a pointer to
a variable blah_ptr, the value can be accessed as *blah_ptr.

38

an example

explain what is happening below:

int X = 2, Y = 3;

int* ptr_int;

ptr_int = &X;

Y = *ptr_int;

*ptr_int = 4;

39

an example

// declare and initialize X and Y

int X = 2, Y = 3;

// declare a pointer to an integer

int* ptr_int ;

// assign to the pointer the address of X

ptr_int = &X ;

// assign the value of Y to be the value of X

Y = *ptr_int ;

// change the value of X to be 4

*ptr_int = 4;

40

another example

what is wrong with the code below?

double Z = 5.0;

int foo = 14;

int* ptr_int;

double* ptr_double;

ptr_int = &foo;

ptr_double = Z;

41

another example

double Z = 5.0;

int foo = 14;

int* ptr_int;

double* ptr_double;

// WRONG!: this is trying to set an integer point

// to the address of a double variable.

ptr_int = &Z;

// WRONG!: this is trying to set a double pointer

// to the value of a double variable.

ptr_double = Z;

42

pointers and functions
1 // second example with pointers

2 #include <stdio.h>

3 void add_one (int* , double *);

4 int main (void)

5 {

6 int a = 2;

7 double b = 3.0;

8 printf("%s %d\n", "value of a before function call is ",

a);

9 printf("%s %f\n", "value of b before function call is ",

b);

10 add_one (&a, &b);

11 printf("%s %d\n", "value of a after function call is ",

a);

12 printf("%s %f\n", "value of b after function call is ",

b);

13 }

14 void add_one (int* x, double* y)

15 {

16 *x = *x + 1;

17 *y = *y + 1;

18 }

../example/example pointers/ex2.c

43

pointer arithmetic

int ii = 2; // declare and initialize an integer

int* ptr_ii = NULL ; // declare and initialize a

// pointer to an integer

ptr_ii = &ii ; // pointer to the integer ii

*ptr_ii = 4; // change the value of ii

*(ptr_ii + 1) = 5; // set value in the ‘‘next’’

// memory address to 5

above, ptr_ii + 1 corresponds to the next address in memory. since
ptr_ii is a pointer to an integer, this will be the address that is 4 bytes
after the memory address stored in ptr_ii.

caveat: we do not know if the memory address ptr_ii + 1 is being
used by the program, so we may get a SEGFAULT.

44

pointer dereferencing again

int ii = 2; // declare and initialize an integer

int* ptr_ii = NULL; // declare and initialize a pointer

ptr_ii = ⅈ // store the address of ii in the pointer

*ptr_ii = 4; // change the value of ii

*(ptr_ii + 0) = 4; // equivalent to *ptr_ii = 4

ptr_ii[0] = 4; // equivalent to *ptr_ii = 4

ptr_ii[1] = 13; // equivalent to *(ptr_ii + 1) = 13

note that the last two lines above look like accessing array elements 0

and 1, where we can think about the pointer as an array of integers.

45

arrays in c

as seen on the previous slide, there is a connection between arrays of
things and pointers, but we can also have arrays of pointers!

we can have arrays of int’s, double’s, char’s, etc...

the general form of an array declaration is:

variable_type array_name[array_size];

here are some examples:

int foo[10]; // an array of ten integers

int (*boo)[10]; // an pointer to an integer array

int *blah[10]; // an array of integer pointers

46

pointer to an array
versus

an array of pointers

a pointer to an array can be declared as:

variable_type (*array_name)[array_size];

an array of pointers can be declared as:

variable_type *array_name[array_size];

47

array initialization

an array can be initialized during declaration:

float my_array[4] = {3.2, 5.0, 6.375, 1.1};

or, you can initialize all elements to zero with:

int another_array[50] = {0};

if you want to assign a value to a part of an array:

my_array[3] = 1.1;

note: array indexing in c starts with 0!!!!!

48

arrays and pointers

arrays and pointers are really the same thing, i.e. the address in memory
of the first element of an array is stored in the name of the array. if we
declare and initialize an array of integers:

int an_array[3] = {1, 5, 6};

then

an_array[1]

and

*(an_array + 1)

are equivalent statements. what is their result?

49

multidimensional arrays

previously we were looking at arrays with only a single dimension. it is
possible to have multidimensional arrays also:

double blah[10][4];

would be a 10 by 4 array of doubles. array initialization can be done
during declaration also:

int foo[2][3] = { {4, 1, 12}, // first row

{-10, 2, 5} }; // second row

50

remark on memory allocation

int foo[2][2] = { {1, 5},

{-15, 3} };

array declaration and initialization as above allocates memory on what is
called the stack. this is a small chunk of memory used for temporary
variables declared within functions.

for much larger arrays and data that will take up more memory, you will
want to use the heap . memory on the heap must be
explicitly allocated and deallocated. allocation will be done with functions
like malloc() and calloc() and deallocation will done using free().

51

arithmetic operators in c

we have already started using operators, but let’s quickly discuss them:

+, -, *, / are the usual addition, subtraction, multiplication, and division.

% is the “mod” operator, returning the remainder after division.

other mathematical functions can be used after include the math.h

header file. for example,

ax

is expressed as pow(a,x) in c syntax.

52

assignment operators in c

used to modify the value of a variable.

++ increments a variable by one, e.g. ii++

-- subtracts one, e.g. ii--

+= add the value on the right to the variable on the left, e.g a += b is
the same as a = a + b.

-= same as above but with subtraction.

/= same as above but with division.

*= same as above but with multiplication.

53

logical operators in c

these are used in conditional statements.

&& is the AND operator.

|| is the OR operator.

! is the NOT operator.

what does this evaluate to?

((5 < 2.3) || (3 == 4)) && (!(5 >= 5))

54

control loops and statements

these consist of

• for loops

• while loops

• if-else statements

let us briefly go over the standard c syntax for these statements.

55

if-else statements

if (condition1)

{

// instructions if condition1 is true.

}

else if (condition2)

{

// instructions if condition1 false and condition2 true.

}

else

{

// instructions if condition1 and condition2 are false.

}

note that you can have as many or as few “else if” parts as you want.
in fact, the “else if” and “else” parts of the statement above are not
necessary, if you only want to do something when condition1 == true.

56

preprocessor if-else statements

we have already seen this implemented in the guard rails.

here are some examples:

check if a macro is defined:

#ifdef DEBUG

printf ("I am in DEBUG mode");

#endif

check if a macro is not defined (like for guard rails)

#ifndef HEADER_FILE_NAME_H

#define HEADER_FILE_NAME_H

// implementation of header file

#endif

57

preprocessor if-else statements

a normal if-else statement with macros

#if MACRO == 1

// instructions

#elif MACRO == 2

// instructions

#else

// instructions

#endif

58

for loops

the general form for a for loop in c is:

for (initalization; condition; increment)

{

// loop instructions to do when the condition is true

}

here is an example that will print out the integers from 0 to 9:

for (int ii = 0; ii < 10; ii++)

{

printf ("ii = %d \n", ii);

}

59

while and do-while loops

the general form for a while loop is:

while (condition)

{

// loop instructions to do when condition == true

}

the general form for a do-while loop is:

do

{

// loop instructions

} while (condition);

note that in a do-while loop, the conditions within the curly braces are
actually executed at least once.

60

break and continue commands

• break: terminate loop and continue with instructions that follow it.

• continue: force the program to go to the next iteration of the loop.

what does the following code do?

for (int ii = 0; ii <5; ii++)

{

if (ii == 3)

{

continue;

}

printf ("ii = %d \n", ii);

}

61

a detour: newton’s method

suppose we are given a function f : R→ R and we want to find x∗ so
that f (x∗) = 0. a common approach is to set up an iteration:

xk+1 = xk − f ′(xk)−1 f (xk).

fact: if our “initial guess” x0 is close enough to x∗, then:

xk → x∗ as k →∞.

where does the iteration come from? try a taylor expansion:

f (xk+1)− f (xk) = f ′(xk)(xk+1 − xk) + O(|xk+1 − xk |2)

for our next assignment, you will implement newton’s method and apply
it to some functions by using pointers and conditional statements.

62

an example using newton’s method

consider the function f (x) = ax , so f ′(x) = a.

if we write out the newton iteration, it looks like:

xk+1 = xk −
axk
a

= 0,

so in this case the iteration converges after one step.

consider the function f (x) = bx2. then the newton iteration is:

xk+1 = xk −
bx2k
2bxk

=
xk
2
,

so the iteration converges linearly... why not faster?

63

memory management in c

storage in memory is either static or dynamic

variables and functions stored in static memory will “last” the for
duration of the program. variables which are stored outside the scope of
functions are stored automatically in static memory. the keywords
static or extern will also indicate the variable or function should be
stored in static memory.

the memory reserved statically cannot be modified later.

#include <stdio.h>

// here is a variable stored in static memory

static int foo = 10

int main()

{

// some implementation

}

64

memory management in c

variables and functions stored in dynamic memory may “last” for an
amount of time which is shorter than the duration of the program. these
might be local variables used within functions or variables that have their
memory explicitly reserved by the programmer.

local variables declared without static or extern are automatically
stored on the stack, a small part of the RAM. memory used for these
variables is freed automatically when the program is done using the
function they are declared within.

void my_function(double foo)

{

// here is a variable declared on the stack

float blah = 15.032;

// some more code

} // memory used to store ‘‘blah’’ is freed here

// at the end of the function

65

more on the stack

memory is managed on the stack in a “last in, first out” order (LIFO).

the metaphor that is often used here is stacking plates. if we have three
plates called A, B, and C, and we insert, or push them onto the stack in
that order, plate C will be on top, followed by B, and then A.

we can pop the plates off the stack in reverse order as C, B, A, i.e. C was
the last in but the first out.

this is a simple approach to deal with memory, and it makes the stack
very fast and efficient.

by the way, push and pop are parts of names for functions used in c and
c++, related to this LIFO concept.

https://www.i-programmer.info/babbages-bag/263-stack.html?

start=3

https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

66

https://www.i-programmer.info/babbages-bag/263-stack.html?start=3
https://www.i-programmer.info/babbages-bag/263-stack.html?start=3
https://en.wikipedia.org/wiki/Stack_(abstract_data_type)

what is your stack size?

$ ulimit -a

core file size (blocks, -c) 0

data seg size (kbytes, -d) unlimited

scheduling priority (-e) 0

file size (blocks, -f) unlimited

pending signals (-i) 62239

max locked memory (kbytes, -l) 64

max memory size (kbytes, -m) unlimited

open files (-n) 1024

pipe size (512 bytes, -p) 8

POSIX message queues (bytes, -q) 819200

real-time priority (-r) 0

stack size (kbytes, -s) 8192

cpu time (seconds, -t) unlimited

max user processes (-u) 62239

virtual memory (kbytes, -v) unlimited

file locks (-x) unlimited

67

dynamic memory on the heap

memory on the heap must be explicitly managed by the programmer. this
means doing allocation and deallocation of the memory being used. the
heap size is only constrained by the RAM size.

you will be using the heap probably because you need more storage that
what is available on the stack.

heap memory management in c is done primarily with

malloc, calloc, realloc, and free

usage for malloc:

pointer_type* pointer_name;

pointer_name = (pointer_type*) malloc(num_bytes);

num_bytes is really the product of the number of elements you want to
store and the number of bytes per element.

68

dynamic memory on the heap

while memory initialization is undetermined with malloc, the function
calloc reserves memory as well as initializes all the bits to zero:

pointer_type* pointer_name;

pointer_name = (pointer_type*) calloc(num_elements,

bytes_per_element);

num_elements is the number of elements to be reserved, and
bytes_per_element is the number of bytes needed for a single element.

note that you can get the number of bytes for a single element with:

sizeof(pointer_type)

69

dynamic memory on the heap

// make pointer

pointer_type* pointer_name;

// allocate memory of certain size

pointer_name = (pointer_type*) malloc(num_bytes);

// rellocate memory of a different size

pointer_name = (pointer_type*) realloc(pointer_name,

new_num_bytes);

70

dynamic memory on the heap

the free function will deallocate memory.

// make pointer

pointer_type* pointer_name;

// allocate memory of certain size

pointer_name = (pointer_type*) malloc(num_bytes);

// deallocate memory

free(pointer_name);

71

multidimensional arrays in c

we can declare a multidimensional array as follows:

double a_matrix[5][12];

where we can think about this as a 5× 12 matrix. on what part of the
memory is this array stored?

we can imagine a matrix as an array of one-dimensional arrays, which can
be read off as the matrix rows or the matrix columns. a question is how
the entries are actually stored in memory. c uses row major indexing of
multidimensional arrrays.

fortran uses column major indexing.

72

row major indexing

consider a 2× 3 matrix

[
1 4 2
5 3 1

]
.

row major indexing of this matrix would be:

1, 4, 2, 5, 3, 1

where as column major indexing would be:

1, 5, 4, 3, 2, 1

since arrays are stored in contiguous blocks of memory, in c, the values
for the matrix above are stored in the row major ordering.

73

multidimensional arrays: example 1
say we want to allocate memory for an int matrix with number of rows
“rows” and number of columns “columns.” there are several ways to do
this. below would be using a single pointer:

int* ptr = (int*) malloc(rows * columns * sizeof(int));

to access an element of the array, you need to navigate to the correct
place in memory given the fact that c uses row major indexing:

for (int ii = 0; ii < rows; ii++)

{

for (int jj = 0; jj < columns; jj++)

{

// Set the value of the element (ii,jj)

*(ptr + ii * columns + jj) = 3;

}

}

to deallocate memory you can simply call free(ptr)
74

multidimensional arrays: example 2
how about using a pointer to a pointer ?

// allocate memory for the rows

int** ptr = (int**) malloc(rows * sizeof(int*));

for (int ii = 0; ii < rows ; ii++)

{

// allocate memory for the columns... for each row!

ptr[ii] = (int*) malloc(columns * sizeof(int));

}

accessing elements can be done as follows:

for (int ii = 0; ii < rows; ii++)

{

for (int jj = 0; jj < columns; jj++)

{

// Set the value of the element (ii,jj)

ptr[ii][jj] = 3;

}

}
75

multidimensional arrays: example 2

in this case, deallocating memory needs to be done more carefully:

for (int ii = 0; ii < rows; ii++)

{

free(ptr[ii]); // free chunk of memory corresponding

// to the columns for a given row.

}

free(ptr); // free chunk of memory for the pointer

// to an array of pointers for the rows

76

multidimensional arrays: example 3
use a pointer to a pointer, but also explicitly make sure that you are
using continguous memory.

// allocate memory for the row pointers

int** ptr = (int**) malloc(rows * sizeof(int*));

// allocate a memory block for the 2D array

ptr[0] = (int*) malloc(rows * columns * sizeof(int));

for (int ii = 1; ii < rows ; ii++)

{

// initialize the memory address for each of the rows

ptr[ii] = ptr[0] + columns * ii ;

}

to deallocate memory, you would call:

free(ptr[0]);

free(ptr);

77

memory issues and problems

• uninitialized memory. remember that when you call malloc, the
values in memory are not initialized to anything!

• memory overwrite. writing to memory that is outside the bounds
of what you have allocated:

int* ptr;

ptr = (int*) malloc(2*sizeof(int));

ptr[3] = 4; // an overwrite

• memory overread. accessing memory which has not been allocated.

int* ptr;

ptr = (int*) malloc(2*sizeof(int));

int number = ptr[3]; // an overread

• memory leak. this can happen in many ways, for example/example,
like not freeing allocated memory or redefining an address of a
pointer before it is freed. tools like valgrind and gdb can help
diagnose these issues.

78

valgrind and gdb

to install valgrind, type in the terminal:

sudo apt-get install valgrind

and to install gdb, type in the terminal:

sudo apt-get install gdb

there are many features within these two pieces of software, but
generically, valgrind is used for detecting memory leaks and gdb can be
used for systematically peering into your code.

79

valgrind and gdb

given an executable main, valgrind can be run in the terminal with the
following command:

valgrind −−tool=memcheck −−leak−check=full −−log−file=out ./main

see valgrind.org for much more information.

to run gdb on an executable, you would first type in the terminal

gdb ./main

at which point a gdb prompt appears, in which you can type “run”:

(gdb) run

see https://www.gnu.org/software/gdb/ for more info.

80

valgrind.org
https://www.gnu.org/software/gdb/

more on gdb
if you plan on testing your code with gdb, you should compile it with
debugging symbols using the “-g” flag as follows:

gcc -g my_code.c -o main

note, if you have command line arguments like:

./main input_file

then you would run this through gdb like:

gdb ./main

and then

(gdb) run input_file

81

structures in c

a struct is defined with the following code:

struct personal_info {

// elements of the structure

int age;

char* first_name;

char* last_name;

};

note that this is only the definition of a struct, which is typically put in
its own header file. you can think about a struct as a “new” data type in
c that can help you organize your code in a logical way.

if you want to declare a variable with type name_struct, this would be
done as:

struct personal_info me;

82

structures in c

“elements” of the structure can be accessed with the dot operator. for
example, once you have declared a variable of type name_struct, you
can initialize the elements as:

me.age = 31;

me.first_name = "John";

me.last_name = "Smith";

you cannot initialize elements in the struct definition, but you can
initialize elements of the structure during declaration as follows:

struct personal_info me = {31, "John", "Smith"};

note that the order in the initializer list must be the same as the order of
elements in the struct definition.

83

structures in c

if you want to initialize structure without respecting the order of the
element, you can use the dot operator inside the initializer list:

struct personal_info me

= {.first_name = "John", .last_name = "Smith", .age = 31};

instead of dealing with a variable type “struct personal_info,” it
often makes sense to just call the variable type “personal_info.” this
can be done by using the typedef keyword as follows:

typedef struct {

// elements of the structure

int age;

char* first_name;

char* last_name;

} personal_info;

note that the typedef keyword generically lets you rename data types.

84

structures in c

so with the following definition

typedef struct {

// elements of the structure

int age;

char* first_name;

char* last_name;

} personal_info;

we can declare a variable of type personal_info as:

personal_info me;

85

guard rails and structs

typically you will want access to a given struct in multiple source files.
you can do this by putting the struct in a header file and then including it
in a source file with the #include directive.

we only want the struct defined once, though, so use guardrails when you
define it:

#ifndef MY_STRUCT_H

#define MY_STRUCT_H

// struct definition

// function prototypes

#endif

the macro MY_STRUCT_H should only be defined here and nowhere else.
standard practice to have the macro be the actual name of the header
file, with “_H” replacing “.h”

86

structs, pointers, and functions

structs can be treated like any other data type. they can be return
values for functions, you can make pointers to them, and you can
pass them into functions (or preferably, pass pointers to them!)

suppose we declare and initialize a struct and declare a pointer:

// declare and initialize struct

personal_info me = {31, "John", "Smith"};

// declare pointer to struct

personal_info* ptr_me;

Then we can set the pointer to the struct using the address-of operator:

ptr_me = &me;

87

extracting members from struct pointer

note that once we have a pointer to a struct, we can simulataneously
dereference it and get a member of it using the “->” operator as follows:

// print out age

printf(‘%d’, ptr_me->age);

// set a new first name

ptr_me->first_name = "chuck";

// equivalent to above

(*ptr_me).first_name = "chuck";

88

in class example: a struct for vectors

what exactly do we need? some bare minimum things are:

• functions for allocating and deallocating memory. these are usually
called “constructors” and “destructors” respectively.

• members that specify the vector length, if it has been properly
allocated, and a pointer to the vector.

• functions for either reading from or writing to an entry of the vector.

vector operations:

• addition of two vectors.

• multiplication of a vector by a scalar.

• dot product of two vectors.

89

generating executables

we have been converting our source files to executables, which we usually
call main, with a single command like:

gcc -o main source.c -lm

recall the “-lm” part links in the standard c math library.

this compilation process can actually be broken into two steps:

1. generate an object file from each source file.

2. from the object files, generate an executable.

90

generating object files

given a source file source.c, an object file can be generated using the
compiler and the “-c” option as follows:

gcc -c source.c

the above command will create an object file with name “source.o”

the object file contains “symbols” which correspond to the functions used
in the file. the symbols can be displayed with the terminal command
“nm.”

nm source.o

each symbol, or function, is either defined in the corresponding source
file, denoted “T,” or is undefined or defined elsewhere, denoted “U.”

91

object files continued

why do we care about generating separate object files for each source file?

answer: if we are editing a large number of source files, each of which
needs to be compiled, we only need to regenerate object files for the
modified source files.

once the object files are generated, they can be compiled into an
executable with the command:

gcc -o main source.o -lm

92

summary

to summarize, the original one-line command to generate an executable
from source files:

gcc -o main source.c -lm

has now been broken into two separate commands.

gcc -c source.c

which generates source.o. this is followed by

gcc -o main source.o -lm

which links the object file in this case with the standard math library and
then generates the executable main.

93

what is the software make??

it allows you to put in rules, name libraries to be linked, and specify
compiler options within a single file that can then be used to generate an
executable.

in order to use make, you need to write a makefile. this file is composed
of macros and rules. macros define environment variables, like which
compiler you want to use, etc. rules consists of the following:

• a target: this represents an action to do, or a file name that is going
to be compiled.

• prerequisites: these are the files that are needed (are used by) the
target. note that targets defined elsewhere can be used as
prerequisites.

• a command: possibilities for this include compilation, linking,
removing, etc.

94

Makefile syntax

a rule has the following syntax within a makefile:

here are some comments

target_name: prerequisites

command

note that there must be a tab before the command. also, comments
within the file can be added following the # symbol.

a makefile is usually named “Makefile” and the commands specified
within it are run by typing the command “make.” when make is run, the
software will try to run the first target in the makefile. if that target has
prerequisites that are also targets, those are run first.

you can also run a particular target by typing:

make target_name

95

a first makefile example

set the compiler

CC = gcc

targets defined below:

for the executable

main: source.o

$(CC) source.o -o main

for the object file

source.o: source.c

$(CC) -c source.c

remove executable and object file

clean:

rm -f main source.o

96

a first makefile example

to compile your code, you can either type

“make main” or simply just “make.”

if you type make, the software will run the prerequisite for the first target
to generate the object file, and then it will run the first target to generate
the executable.

the command “make clean” will delete the object files and executables.

97

tips and tricks for makefiles

most likely you code will contain many source files, and you do not
necessarily want to write a target for each source file. what you can do is
put all the source files names into a single macro as:

SOURCES = source1.c source2.c

given this macro for the source, you can make a macro for the object files
like

OBJECTS = $(SOURCES:.c=.o)

98

data and file io in c: write data to terminal

recall that we can write to the terminal with printf. here is an example:

printf("the first three significant

figures of pi are %f\n", 3.14);

note that the within the format specifier you can use the following:

• %c refers to one character

• %s refers to a string of characters

• %d refers to an integer

• %f refers to a float

• %p refers to the address contained in a pointer

99

read data when executing the program

this can be done in several ways. we have already seen how to pass
arguments into the main function on the command line.

int main(int argc, char** argv){

// stuff!

}

where argc is the number of arguments given on the command like, and
argv is an array of strings, i.e. a pointer to a character pointer.

100

read data during program execution

this can be done with the function scanf. it has the following syntax:

scanf(type_of_variable, path_of_variable);

type_of_variable is the data type for the variable to be read.

path_of_variable is the memory address where we want to store the
variable.

scanf should usually be preceded with a call to printf so the user
knows exactly the data type to be entered into the terminal:

int ii;

printf("please enter an integer into the terminal: ");

scanf("%d", &ii);

in the above code, the program will wait after execution of printf for
the user to enter an integer and then press “ENTER”

101

read data during program execution

you can also read in multiple things at the same time:

int ii;

float ff;

printf("please enter an integer and

float into the terminal: ");

scanf("%d" "%f", &ii, &ff);

102

input and output using files

data files are an important way to store, or “dump,” important output
from your program during its execution.

as before you need to include the header file stdio.h.

you also need to declare a pointer to an object of type FILE.

the are functions you can then use with this object, for example to open
a file:

// declare file pointer

FILE* file_ptr;

// open file

file_ptr = fopen("filename", "mode");

103

input and output using files

the mode parameter for fopen can have different values, depending on
how you want to interact with the file:

• r, open to read
returns NULL if file does not exist.

• w, open to write
file is created if it does not exist, if it does, it is overwritten.

• a, open to append
file is created if it does not exist, if it does, data is appended.

• r+, open to read and write
returns NULL if file does not exist.

• w+, open to read and write
file is created if it does not exist, if it does, it is overwritten.

• a+, open to read and append
file is created if it does not exist

104

input and output using files

for binary files, the mode parameter must be modified to include “b.”

for example, if you want to read a binary file, you would have to open it
with mode “rb.”

also, the filename parameter can include the full path to the file
location in case the file is not in the working directory.

when you are done working with a file, you can (and should) close it via:

fclose(file_ptr);

105

writing to a file

the functions fputc and fputs allow you to write a single character or
string to an opened file, respectively.

// write the single character

// corresponding to the integer c

// to the file corresponding to file_ptr

fputc(c, file_ptr);

// write a string to the file

// correspondingn to file_ptr

fputs("a_string", file_ptr);

106

writing to a file

if you want to write something other than a character or a string to a
file, use fprintf.

FILE* file_ptr;

file_ptr = fopen("example/example.txt","w");

int ii = 5;

// write a string

fprintf(file_ptr, "Hello \n");

// write a string that contains an integer

fprintf(file_ptr, "ii = %d \n", ii);

fclose(file_ptr);

107

reading from a file

the function fgetc will read a single character and return the ASCII
representation of that character as an integer.

int ii = fgetc(file_ptr);

the character that is read from the file is the one where the “stream” is
currently located. after reading that character, the stream moves to the
next one.

the function fgets can read a string:

char buffer[BUFSIZ];

fgets(buffer, BUFSIZ, file_ptr);

BUFSIZ is a macro defined in stdio.h which is an integer at least as big
as 255. it is supposed to be a “guess” for the number of characters in a
given line of the file.

108

reading from a file

the function fscanf can read things from a file of other types:

double random;

fscanf(file_ptr, "%lf", &random);

109

in class example: a struct for vectors

what exactly do we need? some bare minimum things are:

• functions for allocating and deallocating memory. these are usually
called “constructors” and “destructors” respectively.

• members that specify the vector length, if it has been properly
allocated, and a pointer to the vector.

• functions for either reading from or writing to an entry of the vector.

vector operations:

• addition of two vectors.

• multiplication of a vector by a scalar.

• dot product of two vectors.

110

