
Fall 2021: Computational Science I

Instructor: Mohammad Sarraf Joshaghani
(m.sarraf.j@rice.edu)

Module 5: FORTRAN programming

1

brief intro to fortran 90

why? we want to also discuss using blas and lapack in c. these are
important linear algebra packages that are written in fortran.

some important distinctions between fortran and c

• function arguments are automatically passed by reference.

• indexing starts from 1, not 0, as in c.

• matrices are stored in column major format, while in c, matrices are
stored in row major format.

the important parts of a fortran program are:

• functions: they have a return value

• subroutines: they do not have a return value.

• modules: they are collections of subroutines and functions.

2

fortran program and module structure

here is the basic structure of a program:

PROGRAM my_program

! include modules

USE module1

! declarations

! instructions

END PROGRAM my_program

and the basic structure for a module:

MODULE module1

! modules

! declarations

! instructions

END MODULE module1

3

syntax for subroutines

SUBROUTINE name_sub(arg1, arg2)

! modules

! declarations

! instructions

END SUBROUTINE name_sub

some more general comments on syntax

• capital and lowercase letters are considered the same.

• lines are ended with a “new line” and not a semicolon.

a subroutine is called as follows:

CALL name_sub(arg1, arg2)

4

syntax for functions

FUNCTION name_func(arg1, arg2) RESULT (foo)

! modules

! declarations

! instructions (need to return foo)

RETURN

END FUNCTION name_func

the function is called as:

var = name_func(arg1, arg2)

where var and foo have the same type.

5

variable declaration

available types: INTEGER, REAL, COMPLEX, LOGICAL, CHARACTER

! this is necessary for historical reasons

IMPLICIT NONE

LOGICAL :: bool

INTEGER :: n

! equivalent to a float

REAL (KIND = 4) :: f

! equivalent to a double

REAL (KIND = 8) :: g

! an array of dimension 4 by 3 by 2

INTEGER , DIMENSION (4 ,3 ,2) :: array_int_3D

the IMPLICIT NONE line is important. this means that we do NOT want
fortran to implicitly decide our variable types. for example, variables with
names beginning with “i, j, k, l, m, n” would automatically be of type
INTEGER (this is not good!!)

6

specifying inputs and outputs

the attributes IN, OUT, and INOUT specify if a parameters is an input, and
output, or both, respectively.

SUBROUTINE my_sub (v1, v2, v3)

IMPLICIT NONE

INTEGER, INTENT(IN) :: v1

INTEGER, INTENT(INOUT) :: v2

INTEGER, INTENT(OUT) :: v3

! instructions

END SUBROUTINE my_sub

a parameter that is declared with IN cannot be modified by the
subroutine or function.

7

loops and conditional statements
an if-else statement:

IF (condition1) THEN

! Instructions

ELSE IF (condition2) THEN

! instructions

ELSE

! instructions

END IF

a for loop:

DO i = 1 , n

! instructions

END DO

a while loop:

DO WHILE (condition)

! instructions

END DO
8

reading and writing in fortran
this is done with the READ and WRITE functions.

typical usage might be:

WRITE(*,*) "hello world!"

which would output the string "hello world" to the screen. the first
input in the WRITE function corresponds to where you want to write to,
and the second input corresponds to the format specifier.

an asterisk in the first input means that you are going to write to the
terminal.

an asterisk in the second input means ”list-directed io,” where the
program simply tries to figure out the best way to display whatever
follows the WRITE function.

the second input can be an format specifier that should follow certain
rules, see: https://pages.mtu.edu/~shene/COURSES/cs201/NOTES/

chap05/format.html
9

https://pages.mtu.edu/~shene/COURSES/cs201/NOTES/chap05/format.html
https://pages.mtu.edu/~shene/COURSES/cs201/NOTES/chap05/format.html

compiling fortran programs

this can be done in the same way as we compiled c programs, but we
want to use a fortran compiler. for example, if the compiler is called
gfortran, we can create an executable called main as:

gfortran -o main my_program.f90

we can also do this in two steps, where we go from source file to object
file and then object file to executable:

gfortran -c my_program.f90

gfortran my_program.o -o main

10

using fortran functions and subroutine within c code

to do this, there are some things to keep in mind.

• the name of the fortran function/subroutine must be supplemented
with an underscore at the end of it when being called in c code, i.e.
my_fortran_function in fortran would need to be called
my_fortran_function_ in the c source file.

• arguments (i.e. function parameters) must be passed by reference.

• function outputs are passed by copy.

11

compiling c and fortran programs together

you can do this in two steps, where we generate object files from the
fortran and c source files:

gcc -c main.c

gfortran -c fortran_functions.f90

these two commands will generate object files main.o and
fortran_functions.o, which can be combined into a single executable
as:

gcc -o main main.o fortran_functions.o -lgfortran

where we need to include the -lgfortran flag.

12

blas and lapack

blas: “ basic linear algebra package.”

see http://www.netlib.org/blas/

lapack: “linear algebra package.”

see http://www.netlib.org/lapack/.

these libraries are important implementations of cutting edge linear
algebra operations. they have been around for a while (and are written in
fortran), but they are continually updated.

13

http://www.netlib.org/blas/
http://www.netlib.org/lapack/

more about blas

blas contains implementations for “low level” linear algebra operations
that are needed for more sophisticated software, like lapack. these
operations fall into one of three categories:

blas level 1: scalar, vector, and vector-vector operations
(think scalar multiplication and dot products).

blas level 2: matrix-vector operations.

blas level 3: matrix-matrix operations

14

more about lapack

lapack contains implementations of things you would want to do with
matrices, like compute eigenvalues and eigenvectors

Ax = λx

and solve linear systems

Ax = b.

there are many ways to solve these types of problems. you can take into
account the structure of the problem, like if A = AT , in which case,
there might be more efficient algorithms than the “default” choice.

15

example: LU factorization

an LU factorization of a matrix A is a factorization

A = LU

where L is unit lower triangular and U is upper triangular.

this factorization can be directly built from the process of Gaussian
elimination, which converts a matrix to upper triangular form.

note that if you want to solve a linear system Ax = b, you can
equivalently solve

Ly = b
Ux = y

why is it “better” to solve these two linear systems?

16

installing blas and lapack

you can install these fortran libraries on your ubuntu machine like:

sudo apt-get install libblas-dev liblapack-dev

to link these libraries with a c program that might be using functions
from them, you would compile as follows:

gcc -c main.c

gcc main.o -llapack -lblas -lgfortran

17

