fall 2021: computational science |

Module 6: CPP programming

history of the c++ programming language

e developed in 1979 by bjarne stroustrup at bell labs.

e it was called “c with classes” and can be viewed as an extension of
the c language... with it you have the ability to create objects.

e 1985: c++ released to the public.

e compiler and libraries were shipped to anyone who wanted to use it...
you just had to pay the shipping cost (in the era before the internet!)

e stroustrup was at texas a&m for a long time, as a professor of
computer science. he now works in finance in nyc and is affiliated
with columbia.

https://en.wikipedia.org/wiki/Bjarne_Stroustrup

https://en.wikipedia.org/wiki/Bjarne_Stroustrup

relationship of c and c++

the syntax for ¢ and c++ are essentially the same.

c programs can most likely be compiled with a c++ compiler, with some
exceptions.

there are additional keywords in c++ that are not available in c.
there are also certain type conversions that are not allowed in c++.

we can now have classes in c++. class are like a new data type, and are
sort of like structs, but with classes you can define new operators for the
corresponding objects and you have a notion of inheritance.

matrices <— square matrices <— symmetric matrices.

c++ also has new things like references, templating, function overloading,
etc.

structure of a c++ program

source files with an extension .cpp.
header files with an extension .h.
some people use other extensions like .cc or .hh, it doesn't really matter.

as in ¢, you must have a main function in one of your source files that
will be executed first.

header files as before contain function prototypes, structures, and also
definitions of classes.

compilation is the same as with ¢ source code, but you want to use a c++
compiler:

g++ main.cpp -o main

hello world!!

#include <cstdio>
#include <iostream>

int main(void){
printf (" hello world with printf from a c++ program \n");
std::cout << " hello world using iostream" << std::endl;

return O;

namespaces

the basic idea is to encapsulate variables, functions, pointers, and classes
in a space with a single name.

these things allow us to have entities with the same names, because they
“live" in different namespaces.

it is a nice way to organize large projects that may otherwise encounter
naming conflicts.

a namespace is defined as follows:

namespace my_space{
// entities definition or declaration
double foo, blah;
void print_stuff(void);

namespaces in practice

namespaces are usually defined in a separate header file, but can also be
defined in source code outsize of any function.

namespace my_space{
// entities definition or declaration
double foo, blah;
void print_stuff(void);

}

variables defined in namespaces are used outside of the namespace as:
my_space::foo = 3.14;

notice that function prototypes can also appear in namespaces, and their
implementation will be done outside of the namespace like:

void my_space::print_stuff(void){
// instructions

}

namespaces in practice

after including the namespace in your code or via a header file

namespace my_space{
// entities definition or declaration
double foo, blah;
void print_stuff(void);

}

you can use the keyword using...
using namespace my_space;

after you have done this, you do not have to use the prefix
“my_space::" to refer to the variables in there.

all standard c++ library things are defined within the std namespace.

c++ references... what are they?

references are a new kind of variable in c++. you should think about them
as an alias (i.e. another name for...) to a previous defined variable.

they are declare with & following the data type.

// declare and initialize an integer
int ii = 5;

// declare a reference to an integer and initialize it
int& ref_ii = ii;

the reference ref_ii is an alias in the sense that if we modify its value,
that change is reflected also in the value of ii, and vice versa.

more on references

references are not pointers. they differ from pointers in several ways:

e references must refer to an actual address in memory and cannot be
NULL

e initialized references cannot be changes to refer to another object or
variable.

e when a reference is created, it must be initialized.

e the value associated with a reference is accessed via the variable
name... you do not need to “dereference” it with the * operator as
with pointers.

some nice examples and descriptions here:

https:
//www.tutorialspoint.com/cplusplus/cpp_references.htm

https://www.tutorialspoint.com/cplusplus/cpp_references.htm
https://www.tutorialspoint.com/cplusplus/cpp_references.htm

an example using references

// declare and initialize an integer
int ii = 2;

// declare and initialize a reference to ii
int& ref_ii = ii

// change value, note that ref_ii will also equal 10.
ii = 10;

// change value again, note that ii will also equal 20.
ref_ii = 20;

references as function arguments

references are often passed as function arguments for at least two reasons:

e when passing by reference, function arguments are not copied, so it
is more efficient.

e parameters, or function arguments, passed by reference, can be
modified inside the function implementation, and this change is
reflected outside of the scope of the function.

by the way, the const qualifier can be used with references if you want
to make sure that you do NOT change the value.

function overloading

in c++, you can have functions with the same name but different
parameter lists and these are treated as different functions:

void fcn_overload(int, double);

void fcn_overload(double, int);

void fcn_overload(int, int, int);

void fcn_overload(int, double, double);
void fcn_overload(int* , doublex);

these are all considered different functions in c++ because the function
naming generated in the object files depends also on the ordering and
type of function arguments.

classes in c++

classes allow you to define a data structure that corresponds to a new
type of variable.

this new variable is usually called an “object” of the class

distinction between classes in c++ and structures in c: classes can have
functions associated with them. these functions are usually called
“methods” of the class.

you will have constructor and destructor methods to build and delete
objects, as well as possibly other methods that are specific to what the
class is actually representing.

both the data contained in the class as well as the methods are called the
class “members.”

class definition

a header file contains the class declaration, or definition, like what we
have below for a class called MyVector.

class MyVector {
public:
int length;
double* vec;

};

a source file has the implementation of the methods, or functions, of the
class.

an object of this class can be declared like:
MyVector foo;

the object foo can access all public members of the class using the dot
operator:

foo.length = 20;

gualifiers for class members

public: can be accessed in the class and also by objects of the class.
private: can only be accessed within the class implementation.

protected: can only be accessed within the class implementation and
also within derived classes.

the default qualifier is private.

members that are declared at static are shared by all objects created by
the class.

for example, if we have
static double blah = 3.14;

then the member blah will equal 3.14 for all objects of the class.

class methods

to add a method to a class, you must do the following:

e add a function prototype to the class header file. if you want to
access this function through an object outside of the class, it must
be declared with the public qualifier.

e implement the function within the class’s source file.

when you implement a class member in the corresponding source file, you
need to add the classes name with the two colons “::"

so if we have a function that returns the length of a MyVector object, its
implementation might look something like:

int MyVector: :GetVectorLength(void){
return length;

}

friend functions

let's say you have an implementation of our vector class that looks like:

class MyVector {
int length;
public:
double* vec;

};

note that the member length is private and can only be accessed
within the class. if you want to access it outside of the class, you need to
make a friend function:

class MyVector {
int length;
public:
friend int GetLength(MyVector& vec);
double* vec;

};

friend functions

the implementation of the function GetLength might look like:

int GetLength(MyVector& vec){
return vec.length;

}

SO you can use it to get access to that private member!

constructors and destructors

a constructor function is executed when an object is created.
a destructor function is executed when the object goes out of scope.

the constructor function has the same name as the class, while the

destructor function has a name that include the class name with a “~"

front of it.

// a constructor

MyVector: :MyVector (){
// instructions like memory allocation,
// initialization, etc

}

// a destructor
MyVector: : "MyVector O {
// instructions like memory deallocation...

}

in

20

constructors and destructors

note that the constructor for a class can be overloaded, i.e. you can have
multiple implementations depending on the data you have to set up the
object.

class MyVector {
public:
int length;
double* vec;

// several constructor prototypes
MyVector();
MyVector(int nn);

// destructor prototype
“MyVector () ;

21

constructors and destructors

// a constructor that sets a default value
// for the vector length
MyVector: :MyVector (){
length = 5; // a default value
vec = (double*) calloc(length, sizeof(double));
}

// a constructor that allows the user to
// set the vector length value.
MyVector: :MyVector (int nn){
length = nn;
vec = (doublex*) calloc(length, sizeof(double));
}

// destructor
MyVector: :“MyVector (){
if(vec !'= NULL){
free(vec);

3

22

pointer to a class

if you declare a pointer like

MyVector* ptr_vec;

you can then access class members with the “->" operator:

ptr_vec->length

note that the “this” keyword is important in c++. it refers to the
pointer to the current object and is often used in the implementation of
class methods. it can only be used by methods in the class.

23

overloading operators

you can “redefine” operators like multiplication, addition, “(),” for
objects of a given class.

the format would be as follows:

output_type operator operator_name(inputs){
// instructions

}

for example, you define an operator that returns a writable reference to a
vector element as:

double& operator() (int index){
return vec[index];

}

and you can use this operator like:

MyVector vecl(4);
double d = vec1(0);
vecl(3) = 5.0;

24

overloading operators

here would be an implementation of vector addition:
MyVector operator+ (const MyVector& vec_in){
MyVector vec_out(this->length);
for(int ii = 0; ii < vec_out.length; ii++){

vec_out.vec[ii] = this->vec[ii] + vec_in.vec[ii];

}

return vec_out;

25

the rule of three

you should go ahead and provide implementations of a destructor, copy
constructor, and a copy assignment operator.

there might be unexpected behavior if you only implement some of these
and rely on the default implementation for the others.

we discuss these operators and methods in the vector class example...
please see the code on our class website.

26

more on c++ classes

we will first discuss class inheritance. this involves a base class and a
class (or classes) derived from the base class.

why is this inheritance idea useful? the base class can contain methods
and data that we would like to use in derived classes without having to
reimplement them.

think about our example with matrices:
matrices <— square matrices <— symmetric matrices

we can have a base class for matrices that contains methods common to
all types of matrices, while derived classes might contain additional
methods specific to a given type of matrix.

27

derived classes

the syntax for implementing a derived class is:

class name_derived_class : set_inheritance name_base_class {
// instructions

};

set_inheritance is called the “access specifier” and can be public,
private, or protected. if not specified, it is private by default.

a derived class has access to the public and protected members of the
base class, and the access specifier determines the possible access
qualifiers for the base class’ members within the derived class.

28

more on the access specifier

the possible values for set_inheritance give the following access to the
member of the derived class. note again that only public and
protected members are inherited.

public. inherited members maintain their same access.

protected. inherited members become protected in the derived class.
private. inherited members become private in the derived class.

the only data and methods not inherited are:

constructors, copy constructors, destructors, friend functions, and
overloaded operators

29

constructors and derived classes

while constructor functions are not inherited in derived classes, a
constructor from the base class will still be called when setting up
the object from the derived class.

if you have a parametrized constructor, you can explicitly call it within
the derived class using the following syntax:

Triangle::Triangle(double a, double b) : Box_2D(a, b){
// stuff
}

where recall that the Triangle class is derived from the Box_2D class.

if you do not specify a constructor for the base class as above, the
default constructor for the base class will be called as part of
constructing the object for the derived class.

30

multiple inheritance

you can also derive a class from multiple base classes.

below, we derive a class from base classes class1 and class2 with
access specifiers inher1 and inher2 respectively.

class derived_class : inherl classl, inher2 class2 {

// instructions

};

31

polymorphism

what does polymorphism mean in the context of computer programming?
there are three different types:

e ad hoc polymorphism
e parametric polymorphism

e subtype polymorphism

generically, the word polymorphism means several types of “things” being
accessible through a single interface.

Ssee:

https:
//en.wikipedia.org/wiki/Polymorphism_(computer_science)

32

https://en.wikipedia.org/wiki/Polymorphism_(computer_science)
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)

ad hoc polymorphism

an example of this is function overloading. overloaded functions all have
the same name, and possibly do the same thing, but they have different
arguments (parameter lists) that distinguish them.

my_function(int, double);

my_function(double, char);

33

parametric polymorphism

imagine you want to create a class for matrices, but you want the
programmer to specify the type for the elements of a matrix.

for example, elements could be either int or double.

the idea of parametric polymorphism is to have a single object depend on
a “parameter” that might change depending on the needs of the
programmer.

some programmers might only need matrices with int entries, while
other programmers might want to deal with matrices with double
entries, so make the element type be a “parameter” of the matrix class.

34

subtype polymorphism

the idea of subtype polymorphism arises when you have a base class and
derived classes. you might have a method which has the same name in
the base and derived classes, and the question is, what version of the

consider the following example where class B is derived from class A, and
they both have a method called foo_method().

// pointer to an object of class A
Ax ptr_A;

// declaration of an object of class B
B b;

// set pointer A to the memory address of object b
ptr_A = &b;

// what version of foo_method() is called here?
ptr_A->foo_method();

35

subtype polymorphism

// pointer to an object of class A
Ax ptr_A;

// declaration of an object of class B
B b;

// set pointer A to the memory address of object b
ptr_A = &b;

// what version of foo_method() is called here?
ptr_A->foo_method();

if foo_method() is declared as a virtual function,
ptr_A->foo_method () will call the implementation of this method in
class B since ptr_A is a pointer to an object of the derived class B.

otherwise, ptr_A->foo_method () will call the implementation of this
method from the base class A.

36

virtual functions

a function within a class should be declared using the keyword virtual
if its implementation in the base class will be overwritten by a new
implementation in a derived class.

the idea is that you can have a pointer to a base class that contains the
address of an object of a derived class. then, when you call virtual
methods using this pointer, the methods implemented in the derived class
will be executed.

methods are declared virtual in the base class as follows:
class base_class {

public:

virtual output_type function_name(inputs);

};

37

virtual functions in c++11

from c++11 onward, there are additional qualifiers you can use with
virtual functions.

e final... such a virtual function cannot be overwritten in a derived
class.

virtual output_type function_name(inputs) final;

e override... such a virtual function must be implemented in a
derived class. otherwise, a compilation error results.

virtual output_type function_name(inputs) override;

the final keyword can also be used to enforce that a class cannot be a
base class for some derived classes:

class A final {
// instructions

};

38

virtual inheritance

there can be some ambiguity if you have derived classes from derived
classes. for example, consider the following:

class A{
public:
int foo;
}
class B: public A{
};
class C: public A{
3
class D: public B, public C{
}

where class D is derived from both B and C.

39

virtual inheritance

note that the code below does not compile because it is not clear if we
should use the definition of the variable foo from class B or class C.

int main(void){
D d;
d.foo=1;
std::cout << "d.foo = " << d.foo << std::endl;
return O;

3

to resolve this ambiguity, we can force an object of class D to use the
definition of foo from the base class. this is also done with the virtual
keyword as:

class B: public virtual A{
};

class C: public virtual A{
};

class D: public B, public C{
+

40

pure virtual functions

classes can have functions that are pure virtual. such a function is not
implemented for a class, but will be implemented in derived classes or
must remain pure virtual.

objects cannot be created from a class that contains a pure virtual
function... the lingo that is sometimes used here is that the class cannot
be “instantiated.”

the syntax is as follows:

virtual output_type function_name(inputs) = 0;

41

pure virtual functions

a pure virtual function can be implemented outside of the base class, in a
source file, if you want to use such an implementation for derived classes.

derived class can then “implement” the pure virtual function by simply
calling the implementation as follows:

output_type function_name (inputs){
return base_class_name::function_name(inputs);
}

if output_type is void, then return should be omitted.

42

abstract classes

an abstract class:

e must contain a pure virtual function.
e might contain data members like integers or doubles.
e might contain methods and virtual functions.

e might have implementations of virtual functions outside of the class
implementation (that will be used in derived classes).

class Box_2D {

public:

//pure virtual function

virtual double Get_Area (void) = O;
};

abstract classes serve as an “outline” for derived classes.

43

templating functions and classes

templating things is an example of parametric polymorphism.

we can template both functions and classes: the idea here is that we
might want to have mutiple data types for functions or classes that are
otherwise doing very similar things.

for functions, the syntax is:

template <typename T> output_type function_name(inputs);
or

template <class T> output_type function_name (inputs);

the identifier “T" can be anything you want.

44

templating functions and classes

you can also have several template parameters:

template <typename T1, typename T2>
output_type function_name (inputs) ;

here is an example of an addition function with a templated parameter:

template <typename T> T add(T a, T b){
return a + b;

}
this funtion can be called with integers or doubles:

int ii = add<int>(2.3, 3.9);
double d = add<double>(2.3, 3.9);

45

templating functions and classes

the syntax for templating classes is:

template <typename T>
class class_name{

// declaration data members
// definition method members

};

and you can create objects as follows:

class_name<int> foo;
class_name<double> blah;

46

templating functions and classes

we remark that the implementation of methods for a templated class
should be done in the header file where the class is defined.

the syntax for implementing a methods of a templated class is:

template <typename T>
output_type class_name<T>::function_name(inputs){
// instructions

}

we need to do this because the compiler needs to have direct access to
the templated methods when creating an object with a given type. if the
methods are implemented in another (source) file, the compiler might not
be able to find them.

47

template parameters that are not data types

you can also have template parameters corresponding to values instead of
data types:

template <typename T, int N>
T add_N(T a){
return a + N;

};

you can call this function like:
double d = add_N<double, 5>(3.1);
or, if you want to set the non-type parameter, it must be const:

const int n = 5;
double d = add_N<double, n>(3.1);

48

default non-type template parameters in c++11

you can have default values for template parameters that are not data
types in c++11. the default value is used if a template parameter is not
specified.

template <typename T, int N = 6>
T add_N(T a){
return a + N;

};

49

template specialization of classes and methods

you may want to have methods be defined or declared depending on the
template argument used for instantiating an object of a class.

one clear application of this might be for using lapack functions. these
functions have names that depend on the data type you are working with
(set http://www.netlib.org/lapack/explore-html/index.html)

50

http://www.netlib.org/lapack/explore-html/index.html

template specialization of classes and methods

suppose you have a templated class as follows:

template <typename T>
class foo_blah{
public:
void print(void){
std::cout<< "default function print" << std::endl;
I
};

then you can specialize the print function for a given template
parameter, in this case an integer, like:

template<>
void foo_blah<int>::print(void){
std::cout << "hello from foo_blah<int>" << std::endl;

}

51

compiling c++ code with fortran (lapack and blas)

if you want to use some fortran functions like from lapack or blas in your
c++ code, you will want to make sure that the function names are not
“mangled.”

recall that in c++ you can overload functions. this feature is achieved by
mangling function names depending on their parameter lists.

in c, this is not possible and function names are not mangled. to keep
certain function names not mangled when compiling c++ code, you will
want to use:

extern "C" blah blah blah

where extern "C" precedes the function name.

52

dynamic memory allocation in c++

this is done with the functions new and delete.

you can still use the ¢ functions calloc, malloc, realloc, and free in
c++ code if you wish... you just need to include the cstdlib header file.

new and delete will call class constructors and destructors, and if
memory issues arise, new will throw an exception that will stop the code.

recall that if something bad happens with memory allocation in ¢, a NULL
pointer is returned and you must explicitly check for that.

53

dynamic memory allocation in c++

for example, if we want to allocate memory for a pointer to an object of
type foo, then we would do:

foox obj = new foo;

in the above example, the default constructor would be called.
if we include a parameter list as

foox obj = new foo(parl, par2, par3);

the corresponding user-defined constructor would be called.

to call the destructor, we would do:

delete obj;

54

allocating memory for an array of variables

this is done using new[] and delete[]. to allocate memory for an array
of ten integers, you would do something like:

int* ptr = new int[10];
and to deallocate that memory, you would do:
delete[] ptr;

when allocating an array of variables, it is not possible to call a
user-defined constructor. instead, you would have to do it like this:

foo** ptr = new foox[7];

for (int ii = 0; ii < 7; ii++){
ptrlii] = new foo(parl, par2, par3);

}

allocating/deallocating memory for a matrix

for example, if you want to allocate memory for a double array
representing a matrix, stored in column major format, you could:

double** mat = new double*[num_columns];
for (int jj = 0; jj < num_columns; jj++){
mat[jj] = new double[num_rows];

3

note that mat [jj] [ii] corresponds to the matrix element in the iith
row and jjth column.

to deallocate, delete must be called in the reverse order from new:

for (int jj = 0; jj < num_columns; jj++){
delete[] mat[jjl;

}

delete[] mat;

note that the memory allocated here is not contiguous. how would you

allocate a contiguous chunk of memory?
56

allocating/deallocating memory for a matrix

contiguous memory allocation would be done as follows:

double** mat = new double*[num_columns];

mat[0] = new double[num_columns*num_rows] ;

for (int jj = 0; jj < num_columns; jj++){
mat[jj] = mat[0] + jj*num_rows;

}

deallocation is simpler:

delete[] mat[0];
delete[] mat;

57

exception handling in c++

this is a nice way to add runtime check to parts of your code. this is done
with three keywords: try, throw, and catch.

e try: some code is put within a try block. during execution, the
program checks to see if throw is encountered in the try block.

e throw: used to indicated a problem has occurred in the try block.

e catch: a catch block immediately follows a try block and is used
for processing the problems that are “thrown.”

58

exception handling in c++

#include <iostream>
int main(void){

try{
// code to try
throw 13; // throw exception

3

catch (int e){ // catch throw of integer
std::cout << " exception encountered :
" << e << std::endl;
return 1; // stop program

3

return O; // no exception encountered

59

exception handling in c++

// user constructor
template <typename T>
my_matrix<T>::my_matrix(int Nrows, int Ncols){
try{
if (Nrows < 1 || Ncols < 1){
throw " matrix dimensions do not make sense.";
}
}
catch (char* problem){
std::cout << " exception encountered:"
<< problem << std::endl;
}
// more code follows below if the exception
// is not caught.

60

input/output in c++

we have been using this in examples... std::cout can be used to output
information to the terminal. it is part of the std namespace and stands
for “standard character output.”

note that you do not need to include a format specifier as we had to do
with printf in the c language. here is an example:

int ii = 6;
std::cout << "a random integer is " << ii << std::endl;

this would be equivalent to the c code:

int ii = 6;
printf("a random integer is %d\n", ii);

61

input/output in c++

int ii = 6;
std::cout << "a random integer is " << ii << std::endl;

note that “std::endl” corresponds to the endline character, so the
above would be equivalent to:

int ii = 6;
std::cout << "a random integer is " << ii << "\n";

you can think about the “<<" (called the insertion operator) as

concatenating things together (string, integers, doubles, ...), which are

then “streamed” to the console specified by std: : cout.

62

read from the terminal

we can also read info from the terminal, like the function scanf in the c
language. consider the following example:

int foo;
std::cout << "type the value you would like for foo: ";
std::cin >> foo;

the above code will wait for your user input at the second line, at which
point you can enter a value for foo in the terminal.

“>>" is called the extraction operator, and it is not clear what it does if
you do not enter an integer or string...

63

read/write to a file

there are standard classes for doing file i/o in c++. these are:

e std::ofstream, class for writing to files.
e std::ifstream, class for reading to files.

e std::fstream, class for both reading and writing.

std::fstream file;
file.open(file_name, opening_mode);
// instructions

file.close();

64

read/write to a file

std::fstream file;
file.open(file_name, opening_mode);
// instructions

file.close();

the opening_mode can take a combination of the following values:

multiple values can be specified by separating modes with

ios::in, (input) open to read.
ios::out, (ouput) open to write.

ios: :trunc, (truncate) if file has been opened to write, overwrite
its contents.

ios::ate, (at end) set stream position to end of file.

ios: :app, (append) if file has been opened to write, append to end
of file.

ios::bin, (binary) binary mode.

u| "

65

example for file i/o

see below how we open a file with multiple values for the opening_mode.

std: :fstream blah_stream;
blah_stream.open("my_test_file.txt",
ios::out | ios::app | ios::in);

// do some things
blah_stream.close();

66

